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James W. Bono
Department of Economics
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Abstract

Many economically and politically important groups are themselves comprised of
groups. Examples of such multi-level group structures include coalition governments,
labor confederations and research consortia. In this paper, a model of multi-level group
structures and an equilibrium concept are developed. The results establish that individu-
als and groups will make tradeoffs across levels of the overall structure. Therefore, overall
stability and overall instability can both arise from any combination of stable and unsta-
ble levels. The framework and results have applications in many fields, including political
economy, industrial organization, and environmental economics.
JEL classification codes: C62, C71, C79, D72
Keywords: the core, coalitions, complexity, multi-level group structure.

1 Introduction

Many economically and politically important groups are themselves comprised of groups. Ex-
amples of such multi-level group structures include coalition governments, labor confederations
and research consortia. Traditional concepts of group stability (e.g. the core, the bargaining
set, and the α-core) are not equipped to deal with all levels of a multi-level structure simul-
taneously. Instead, researchers are forced to assume away the effect of all other levels when
analyzing the stability of a given level. The model presented here (called coral games) considers
stability of all levels simultaneously. It provides insight into the way groups and individuals
make tradeoffs across the levels of a group structure and sheds light on a more complicated
concept of stability.

The simplest case of a multi-level group structure involves two levels. On one level individ-
uals play a group formation game. On another level those groups are involved in a game to
form groups of groups. Consequently, we can expect self-interested individuals (and groups) to
accept losses in one level of the multi-level structure for gains in another level. This type of
tradeoff plays a central role in demonstrating the complicated nature of stability. In particular,

I would like to thank Mary Hansen, Donald Saari and members of the Department of Economics and the
Institute of Mathematical Behavioral Sciences at UC Irvine for comments and suggestions.
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when different levels of group formation are considered simultaneously, we get the following two
phenomena: (1) overall stability of the structure can arise from unstable levels, and (2) stable
groups can be destabilized when players make tradeoffs across levels.

While an illustration of point (1) must wait until the next section, the Iraq Coalition Gov-
ernment, provides a convenient illustration of point (2). There are serious game theoretic
considerations that complicate the creation of a coalition government from the Sunnis, Shias,
and Kurds. Military, religious and political scholars all note that cooperation among the ethnic
groups is not guaranteed, yet it seems to have been missed that the imposition of a coalition
government among these groups might cause the individual groups to dissolve. That is, now
that there exists a power sharing game, there might be an alliance among subsets of the Sunnis,
Shias and Kurds in which members benefit from joining while excluding other members of their
ethnic group. The tradeoff for political power may destabilize what appears to be a stable
ethnic group structure.

1.1 Coral Games and Coalitional Games

Neither a single characteristic function form game [see von Neumann (1928); Shapley (1967);
Scarf (1967); Aumann and Dreze (1974)] nor a single partition function form game [see Thrall
and Lucas (1963); Bloch (1996); Yi (1997); Ray and Vohra (1999)] can capture the tradeoffs
and complexities that arise in multi-level structures. Each approach describes group formation
given an exogenous set of players. However, in a multi-level structure, the set of players in a
game among groups is not exogenously given but rather depends on payoff maximizing tradeoffs
across levels. The coral games framework uses characteristic and/or partition functions in a
more general model that allows for co-dependence among levels.

This paper develops an equilibrium concept for coral games called the core of cores1. Results
describe the way in which the stability of each level depends on the other levels. These include
necessary and sufficient conditions for the existence of the core of cores, several corollaries on
the properties of the core of cores, and a theorem that establishes a relationship between the
cores of each component game and the core of cores of the multi-level structure.

Other authors have looked at similar ways of enriching coalitional structures. Derks and
Gilles (1995) and Demange (2004) examine the effect of restrictions that arise from a hierarchical
structure on coalition formation. Not to be confused with the multi-level structures discussed
in the current paper, these papers refer to a hierarchical permission structure to capture the
relationship between superiors and subordinates. Demange argues that permission structures
can allow groups to organize efficiently when such organization is otherwise unstable.

In a theme that is very closely related to the model presented below, Winter (1989) develops
the idea of a “levels structure” wherein a coalition can be thought to have a type of substructure,
each level of which consists of a cooperative agreement. Winter gives a value for such structures
and shows that this value is an extension of the Shapley value and others. However, he stops
short of allowing for the endogeneity of these substructures, and hence does not develop an
equilibrium concept.

Perhaps the most closely related work is done in a series of papers by Herings, Van Der Laan,

1The term, core of cores, was suggested by Donald G. Saari
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and Talman (2003, 2007a,b) regarding “socially structured games.” Like other coalitional mod-
els, their model involves a set of players partitioning into coalitions. However, the innovation
comes in that each coalition has an internal (social) structure. This social structure is driven by
the exogenously specified power of the players. The power of a player determines the degree to
which that player may take payoffs from less powerful players subject to the restriction that the
less powerful players cannot do better by forming another internal organization in which they
can secure higher payoffs. Hence the socially structured game needs a new equilibrium concept,
the socially structured core, which the authors show is a subset of the core of the game without
social structure. Although Herings et al. allow the internal structure to be endogenous, they
stop short of allowing for the internal structure to involve separate (yet dependent) payoffs as
in the coral games model.

The results also suggest a new way of thinking about dynamic group formation that is
complementary to the extensive work on the dynamics of coalition formation [see Hart and
Kurz (1983); Ray and Vohra (1999); Konishi and Ray (2003); Hyndman and Ray (2006); Manea
(2007)]. In addition to looking at the dynamics of bargaining and multi-lateral deviations as
is well-covered by the literature, one can also consider the dynamics of sequential formation of
multi-level structures. If the multi-level structure forms sequentially, we have that individuals
form groups, then groups form groups, and so on. In the core of cores, a multi-level structure
can be stable even though some (or all) of its levels are independently unstable. Hence, a stable
structure may be unlikely to form if the first levels in the sequence are unstable.

1.2 Coral Games and Political Economy

The field of political economy often involves situations where individuals and groups are forced
to balance tradeoffs between multiple activities. Researchers in this area have long known that
such environments can create equilibria that are not the sum of their parts. In other words,
optimal behavior for the overall situation is not necessarily comprised of equilibrium behavior in
each of the individual components that constitute the overall environment. The work of Tsebelis
(1991) on nested games captures well the idea of co-dependence in noncooperative voting games.
He documents the way in which voting coalitions form to optimize with respect to a voting
process that involves multiple stages. The behavior in each stage is not an equilibrium of that
stage but is a component of optimal behavior for the overall voting process.

Many scholars have applied this idea of co-dependent games to find a stabilizing effect
in governance and constitutional design. Hammond and Miller (1987) discuss the stabilizing
effects of bicameralism and the executive veto on the legislative process and the ability of
the legislative override to counter that effect. Krehbiel (1988), Tsebelis and Money (1997)
and Tsebelis (2000) find similar stabilizing effects of bicameralism. The key in many of these
settings is the way co-dependent games limit profitable deviations by imposing unacceptable
tradeoffs.

Noh (2002) and Garfinkel (2004) provide two more political economy applications by ana-
lyzing resource distribution within a coalition in the presence of conflict with other coalitions.
Because they consider only the payoffs from the conflict with other coalitions, their analysis ad-
heres closely to the literature on endogenous coalition formation. However, it suggests strongly
the importance of a multi-level analysis. One of the advantages of the current model is to
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capture the conflict among coalitions while simultaneously allowing for the “within-group” in-
teraction to generate payoffs. Hence, the coral games framework deals with both the multi-level
nature of organizational structures and multi-dimensional payoffs in a straightforward manner.

The outline of the paper is as follows. First, the coral games framework is detailed for
the case of transferable payoffs and two levels. It is then extended to include non-transferable
payoffs as well as an arbitrary number of levels. Finally, a simple example involving political
party formation and interaction (inspired by Winter’s example) provides a concrete illustration
of several theoretical results, including the existence theorem and its corollaries.

2 Definitions and Results

2.1 Transferable Utility on Two Levels

In this section, the coral games framework is formally defined for games that award transferable
payoffs on two levels. The payoffs on each level can come either from a partition function or from
a characteristic function; the form need not be the same on both levels. In the formal model
below, it is assumed that level one uses a characteristic function and level two uses a partition
function. This is done in order to demonstrate the versatility of the coral games approach and
to make clear the opening remark. It should be noted, however, that the definitions are easily
adapted to handle all combinations of characteristic and partition function payoffs with only
slight changes in notation.

Assume that there are N players and that their interaction takes place on two levels. On
level one they are organized into a partition P = {P1, P2, ...}; i.e. N = ∪iPi and Pi ∩ Pj = ∅
for i 6= j. A partition P is an element of Ω(N), the set of all partitions of N . The elements of
P are coalitions of players. The payoff available to a generic subset of the players, S ⊆ N , is
given by a characteristic function v : C → R, where C is the set of all nonempty subsets of N .
Thus the payoff to the ith element of P is v(Pi).

On level two, the elements of P form a partition B = {B1, B2, ...}, where B is in Ω(P), the
set of partitions of P . To be clear, B is a partition of P ; it is a partition of coalitions. The
elements of B are coalitions of coalitions. Bk = {Pi, Pj, ...} has a single payoff that is to be
divided among its member coalitions, Pi, and again within each coalition. This payoff is given
by the function, w : B × Ω(P) −→ R. Note that w(·, ·) is defined for all P ∈ Ω(N).

The N players are assumed to have preferences over the payoffs they receive from levels
one and two. Let Uj(x(j), y(j)) represent player j’s utility, where x(j) is the payoff that player
j receives from level one and y(j) is the payoff that player j receives from level two. These
payoffs must be feasible, i.e.

∑
j∈Pi

x(j) ≤ v(Pi) and
∑

j∈Bk
y(j) ≤ w(Bk,B). To simplify the

mathematics, assume preferences are convex and the level sets are globally invertible so we can
write xj(y) and yj(x). In other words, given a level of utility, Ū , and the payoffs from level
one, x, we can find the payoffs from level two, y, that solve Uj(x, y) = Ū (likewise in the other
direction). This brings us to the definition of a coral game.

Definition 2.1. A co-dependent organizational levels (or coral) game in transferable
payoffs is given by 〈N, v, w, %〉, where N is the number of players, v(·) gives the payoffs on
level one, w(·, ·) gives the payoffs on level two, and % represents preferences over payoffs (x, y).
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As stated in the introduction and enforced through the development of the formal model,
characteristic and partition function form games are special cases of coral games.

Remark. Characteristic and partition function games are special cases of coral games.

1. A characteristic function game on level one is a coral game in which the players are N ,
v(Pj) is a characteristic function and w(Bk,B) = 0 for all Bk ∈ B and all B ∈ Ω(P).

2. A partition function game on level two is a coral game in which the players are elements
of a fixed P , w(Bk,B) is a partition function and v(Pj) = 0 for all Pj ∈ P . This game
is written as 〈P , w〉, the partition function game in which the players are fixed to be the
elements of P .

The idea is that a coral game is a generalization of existing coalitional games. In coalitional
games, one of two strong assumptions is usually made. Namely, either the only interaction is
between individuals (characteristic function games), or the interaction is between coalitions.
The following results show how insight is gained by fitting applications of characteristic and
partition function form games into the coral games framework. In a basic way, then, these
results explain the existing literature as cross-sections of larger phenomena.

As mentioned in the introduction, this paper introduces a solution concept, the core of cores,
to accompany the coral games model. The core of cores is similar to the traditional concept
of the core. It is an allocation, and an associated group structure, such that no multilateral
deviations are beneficial. However, since each coalition Bk ∈ B is comprised of one or more
subcoalitions Pj ∈ P , deviating coalitions must have the same structure. In particular, a
deviating coalition is a subset of players S ⊂ N organized as a structure S that is comprised
of one or more subcoalitions Sj ∈ S. Hence, the core of cores requires that no group S can
organize themselves in a way that allows every member to improve his or her overall welfare,
where overall welfare is a result of organization and interaction on both levels.

Definition 2.2. (x, y,P ,B) is in the core of cores of 〈N, v, w, %〉 if @S ⊂ N , with partition
S = {S1, S2, ...}, and (x′, y′,P ′,B′) such that (x′, y′) ÂS (x, y),

∑
j∈Si

x′(j) = v(Si) for all
Si ∈ S,

∑
j∈S y′(j) = w(S,B′), P ′ = {P \ S,S}, and B′ = {B \ S, S}.

In order to state the next result, an excess function for coral games must first be defined.

Definition 2.3. For a coral game 〈N, v, w, %〉 and allocations (x, y,P ,B) let the excess,
e∗(S, x, y,P ,B), for a partition S of a subset of players, S ⊂ N , be the constrained maxi-
mized value of e(S, x, y,P ,B) with respect to x′, where

e(S, x, y,P ,B) = [w(S,B′)− y(S)]−
[∑

j∈S

∫ x′(j)

x(j)

dyj(x)

dx
dx

]
(2.1)

and the constraints are
∑
j∈Si

x′(j) ≤ v(Si) ∀Si ∈ S (2.2)

x′(j) ≥ 0, (2.3)

yj(x
′(j)) ≥ 0, ∀j ∈ S (2.4)
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and where B′ = {B \ S, S} and yj : R −→ R defines the level set Ū = Uj(x, y). Thus
dyj(x)

dx
is player j’s marginal rate of substitution between level two and level one payoffs when

Ū = Uj(x, y).

The excess function is the sum of the level one and level two gains and losses accrued to each
Si by deviation with the coalition of coalitions S. We use the marginal rate of substitution
between level one and level two payoffs in order to measure level one gains (or losses) in
terms of level two payoffs. When the extra arguments are obvious, notation is simplified from
e(S, x, y,P ,B) to e(S).

The three constraints are straightforward. The first is the budget constraint for level one
payoffs. The second simply says that level one payoffs cannot be negative. The third states that
player j cannot offer more level two payoffs to group S than she currently has. Note that in an
environment where players have sufficient reserves, constraints 2.3 and 2.4 are not necessary.
However, the current analysis does not allow for borrowing.

With more inequality constraints (2|S| + |S|) than free variables (|S|), we need to know
which are binding before we can find e∗(S). Therefore, the following algorithm is useful for
solving the above maximization problem. In finding the maximum, the algorithm identifies
which of the 2|S| + |S| constraints are binding. But first, some additional notation must be
introduced. N t is the set of players remaining after round t − 1, N t,′ is the set of players
eliminated in round t− 1, and vt(Si) = vt−1 −∑

j∈Nt,′ x′(j).
For each Si ∈ S,

1. Maximize e(S, x, y,P ,B) subject to
∑

j x(j) ≤ v(Si) to get x1.

2. For j ∈ Si check constraints 2.3 and 2.4.

(a) if yj(x
t) < 0 set x′(j) to solve yj(x) = 0.

(b) if xt(j) < 0 set x′(j) = 0.

(c) otherwise xt(j) = x′(j).

3. To get xt+1

(a) If
∑

j [xt(j)− x′(j)] < 0,

i. N t+1,′ = {j : xt(j) = 0}
ii. For j ∈ N t+1,′, fix x∗(j) = 0.

iii. Maximize e(S, x, y,P ,B) over xt+1(j) for j ∈ N t+1 subject to

∑

j∈Nt+1

xt+1(j) ≤ vt+1(Si).

iv. Return to step 2.

(b) If
∑

j [xt(j)− x′(j)] > 0,

i. N t+1,′ = {j : yj(x
t) = 0}

ii. For j ∈ N t+1,′, fix x∗(j) = x′(j).
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iii. Maximize e(S, x, y,P ,B) over xt+1(j) for j ∈ N t+1 subject to

∑

j∈Nt+1

xt+1(j) ≤ vt+1(Si).

iv. Return to step 2.

(c) If
∑

j [xt(j)− x′(j)] = 0 fix x∗(j) = x′(j) and terminate.

Proposition 1. This algorithm converges to the maximum in at most max{|Si| : Si ∈ S}
iterations.

Proof. We write the Lagrange multiplier from the constrained maximization to attain xt for Si,
as λt

i. Suppose the algorithm ends in time τ , then the conditions for x∗ to maximize the excess
equation are:

• if
dyj(x

∗)
dx

> λτ
i then yj(x

∗) = 0

• if
dyj(x

∗)
dx

< λτ
i then x∗ = 0

• otherwise
dyj(x

∗)
dx

= λτ
i

• ∑
j∈N x∗(j) = v(Si) or yj(x

∗) = 0 for all j ∈ N .

Now we make two claims that will be necessary and sufficient to show that the algorithm
converges to the maximum:

1. If λt+1
i < λt

i, then λt+k
i < λt

i for all positive integers k ≥ 2.

2. If λt+1
i > λt

i, then λt+k
i > λt

i for all positive integers k ≥ 2.

Starting with the first claim. Without loss of generality, assume t = 0 to simplify notation.
Now suppose λ1

i < λ0
i . Then ∑

j∈N1

x1(j) <
∑

j∈N1

x0(j)

because
∑

j∈N0

x0(j) = v0(Si), and

∑

j∈N1

x1(j) = v1(Si)

where N0 ⊇ N1 and v0(Si) > v1(Si). In other words, to get N1 we removed players from N0

with x0(j) < 0.
In order to show that λk

i < λ0
i we will show that

∑

j∈Nk

xk(j) ≤
∑

j∈Nk

x0(j). (2.5)
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Rewriting each side of the the equation we get

∑

j∈Nk

xk(j) = v0(Si)−
k∑

m=1

∑

j∈Nm,′
x′(j), and

∑

j∈N2

x0(j) = v0(Si)−
k∑

m=1

∑

j∈Nm,′
x0(j).

We can rewrite 2.5 as:

k∑
m=1

∑

j∈Nm,′

[
x0(j)− x′(j)

] ≤ 0

or alternatively as

k∑
m=2

∑

j∈Nm,′

[
x0(j)− x′(j)

] ≤
∑

j∈N1,′

[
x′(j)− x0(j)

]
. (2.6)

However, since λ1
i < λ0

i , we know that x′(j) = 0 for all j ∈ N1,′. Together with the facts:

k∑
m=2

∑

j∈Nm,′
x0(j) = v0(Si)−

∑

j∈N1

x0(j)−
∑

j∈Nk

x0(j) and

−
k∑

m=2

∑

j∈Nm,′
x′(j) = vk(Si)− v1(Si),

we can rewrite inequality 2.6 as

v0 −
∑

j∈N1

x0(j)−
∑

j∈Nk

x0(j) + vk − v1 ≤ −
∑

j∈N1,′
x0(j)

v0 −
∑

j∈N1

x0(j)−
∑

j∈Nk

x0(j) +
∑

j∈N1,′
x0(j) ≤ v1 − vk.

Since v0(Si) = v1(Si), we have

vk ≤
∑

j∈N1

x0(j) +
∑

j∈Nk

x0(j)−
∑

j∈N1,′
x0(j).

This always holds because x0(j) < 0 for all j ∈ N1,′ and x0(j) > 0 for all j ∈ N1 and Nk.
The proof of the second claim is exactly the inverse argument of the first, omitted here to

conserve space. Together, they guarantee that the conditions for a maximum are met, because
λk

i is either max{λt
i}, min{λt

i} for t < k, or in (λk−1
i , λk+1

i ).
To see that the algorithm converges to the maximum in τ ≤ max{|Si|} rounds, consider

the following argument. For every round, either
∑

j∈Nt xt(j) = 0 or the algorithm continues
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to the next step. When the algorithm continues, some subset of the players N t+1,′ have x∗(j)
fixed at x′(j). Hence, in every round that the algorithm continues, there are strictly fewer free
variables x(j) than in the previous round. In the extreme, if |N t,′| = 1 for every round t < τ ,
then the routine only lasts as long as there are members of the largest group Si.

Having established a method for computing the excess, the next result uses S’s excess,
e∗(S), to give a necessary and sufficient condition for payoffs (x, y) and structure (P ,B) to be
in the core of cores.

Theorem 1. (x, y,P ,B) is in the core of cores of 〈N, v, w, %〉 if and only if e∗(S) ≤ 0 for every
partition, S, of every subset S ⊂ N .

The proof is provided for a more general statement of this theorem in section 3.2.
Theorem 1 is best understood by thinking about the tradeoff between the two levels. There

can be no tradeoff available to any subset of the players that results in a pareto improvement
for the members of that subset. By converting gains on level two into level one payoffs, we
know how much level two must compensate for losses on level one or vice versa. As the excess
function for standard coalitional games specifies how much coalition S forgoes to be in the grand
coalition (or partition structure), so does the excess in coral games. However, the difference is
that this version makes corrections for the more complicated structure of coral games, including
the tradeoffs between different types of payoffs. In addition, the excess in coral games easily
incorporates nontransferable payoffs on level one. Further interpretation of theorem 1 comes
in the form of three corollaries.

Corollary 1. Suppose (x,P) ∈ Co(N, v) and (y,B) ∈ Co(P , w) where B is a partition of P.
Then (x, y,P ,B) is not necessarily in Co(N, v, w, %), the core of cores.

Proof. This follows from the endogeneity of P and the fact that payoffs on level two, w(Bk,B),
are defined for all P ∈ Ω(N). The game 〈P , w〉 takes the players, elements of P , as given
whereas in a coral game that set is endogenous. Therefore, a coalition S might be able to
reorganize as S so that

e∗(S) = [w(S,B′)− y(S)]−
[∑

j∈S

∫ x′(j)

x(j)

dyj(x)

dx
dx

]
> 0.

B′ is not a partition of P but rather is a partition of P ′ = {P \ S,S}. Hence we can have
that w(S,B′) is greater than y(S) even though (y,B) ∈ Co(P , w).

Corollary 1 shows that the sum of stable levels is not a stable whole. Even when level one is
stable and level two is stable given the partition that results from level one, the overall structure
can be unstable as a result of the endogeneity of each partition. The next result shows that a
stable whole can be the sum of unstable parts.

Corollary 2. (x, y,P ,B) ∈ Co(N, v, w, %) does not imply

1. (x,P) ∈ Co(N, v), or
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2. (y,B) ∈ Co(P , w).

Proof. Suppose there is some structure P ′ = {P \S,S} on level one such that v(Si)−x(Si) > 0
for all Si ∈ S. Then (x,P) is not in Co(N, v). However, depending on the game among
coalitions, S can suffer losses on level two by rearranging into P ′. Equation 2.1 says that S will
not deviate from P if the losses in level two payoffs outweigh the gains in level one payoffs.

A similar argument can be made in the other direction. Suppose that by breaking from the
structure B on level two, a subset S, arranged as S, has that w(S,B′)− y(S) > 0. Then, (y,B)
is not in Co(P , w). However, depending on the game within coalitions, S might suffer losses on
level one by rearranging into P ′. Equation 2.1 says that S will not deviate from B if the losses
in level one payoffs outweigh the gains in level two payoffs.

Finally, these scenarios can exist simultaneously. They can even exist for the same S ⊂ N
as long as they are for different partitions S. To be clear, it is possible that a partition of a
subset, S, can do strictly better on level one by deviating from P , yet suffers from this deviation
with even greater losses on level two. At the same time, we can have a different partition of S,
S ′, that does strictly better on level two by deviating from B, yet suffers from this deviation
with even greater losses on level one. Hence, we would have a situation in which (x,P) is
not in Co(N, v) and (y,B) is not in Co(N,w), yet (x, y,P ,B) is still in the core of cores of
〈N, v, w, %〉.

Corollary 2 says that we do not need the levels to be individually stable in order to create
a stable multi-level structure. This is a powerful insight. Many times our analysis reveals an
empty core, yet the real world does not always bear out such instability. Corollary 2 suggests
that this can be due to another level’s influence on the unstable game, creating stability overall.

Often we have a situation, such as one might speculate is happening in the Iraq coalition
government, where a coalitional game is imposed among the coalitions of an existing structure.
In this case, we want to know what effect the game among coalitions will have on the stability
of the coalitions themselves. The following result provides a condition under which the pre-
existing coalition structure will be unstable.

Corollary 3. If (x,P) ∈ Co(N, v) then (x, y,P ,B) is not in Co(N, v, w, %) if there exists S
and x∗ for every (y,B) such that

w(S,B′) >
∑
j∈S

yj(x
∗).

Proof. For the purposes of theorem 1 and its proof in section 3, it is useful to see the entire
excess function and the way that it balanced net gains on both levels against each other.
However, we can simplify equation 2.1. First break the term

∑
j∈S

−
∫ x∗

x

dyj(x)

dx
dx

into ∑
j∈S

−yj(x
∗) + yj(x)
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where yj(x) is simply the sum of the anti-derivatives of
dyj(x)

dx
evaluated at x. Then, because

dyj(x)

dx
is defined implicitly for Ūj = Uj(x, y), this means that

∑
j∈S

yj(x) = y(S).

The excess for coalition S is then

e∗(S) = w(S,B′)−
∑
j∈S

yj(x
∗).

Written this way, S’s excess is the difference between its payoffs on level two, controlling for
the effect of the change in level one payoffs.

From theorem 1 we know that the profile of payoffs and structures (x, y,P ,B) is not in the
core of cores if e∗(S) > 0 for some S. Therefore, if there is no (y,B), where B is a partition of
P , such that theorem 1 is satisfied, then (x,P) is not a part of the core of cores.

Corollary 3 introduces a straightforward way of looking at the dynamic formation of orga-
nizational structures. It determines when level two destabilizes level one. Also, to put this in
the context of the literature, consider the criticism of characteristic function form games that
they ignore the interaction between coalitions. By using the coral games approach it is now
clear when this is a safe assumption and when it is not. According to corollary 3, when the
payoffs generated by the interaction between coalitions present strong enough tradeoffs, it is
not a safe assumption.

But there is a corresponding criticism of partition function form games regarding the payoffs
from interaction within each coalition. Sometimes the payoffs from interaction within each
coalition are included in the partition function itself. That approach is unsatisfactory because
it does not allow us to see the way the levels are connected. If we do not see the way they are
connected, then we do not know whether an organizational structure can be built sequentially;
first by the formation of coalitions, then by the formation of coalitions of coalitions as in
corollary 3.

The other option when dealing with partition function games is to assume that the inter-
action among coalitions is the only relevant aspect of the game. Given our understanding of
coalitions and corollary 3, we should not expect that this assumption will always hold. So it is
important to reexamine our approach to partition function games, taking care not to overlook
the effect that other levels in the structure have on the stability of the level in question.

The above results, particularly corollary 2, established that the core of cores is not limited in
its construction to stable components, and that it can arise from any combination of stable and
unstable levels. However, it is often quite easy to construct mathematical coincidences, such
as three lines intersecting in two dimensions. So we need to know if a core of cores consisting
of unstable components is a rarity or if it generically exists. One way of doing so is by looking
at a core of cores that consists of stable components (x,P) and (y,B), then proceeding to look
at perturbations of the functions v and w such that neither the first nor the second level is
stable, yet they are stable together. Here there is an open set of perturbed functions, (v′, w′),
to satisfy that condition.

11



Theorem 2. For a coral game in transferable payoffs G = 〈N, v, w, %〉 where N ≥ 3, (x,P) ∈
Co(N, v), (y,B) ∈ Co(P , w), |P| ≥ 2 and B is a partition of P, so that (x, y,P ,B) is in the
core of cores of G, there exists an open set of functions

{(v′, w′) : ∃ (x′,P) /∈ Co(N, v′), (y′,B) /∈ Co(P , w′), and (x′, y′,P ,B) ∈ Co(N, v′, w′,%)}
Proof. This result is proven by construction. First select vectors α and β that satisfy the
following conditions:

0 ≤ α(j) ≤ x(i)

0 ≤ β(j) ≤ y(j)

where α(j) and β(j) are the jth elements of the respective vectors. With α and β we then
perturb v(Pi) and w(Bk,B) in the following manner:

v′(Pi) = v(Pi)− α(Pi)−
∑

j∈Sw∩Pi

∫ ȳ

y

dxj(y), ∀Pi ∈ P (2.7)

w′(Bk,B) = w(Bk,B)− β(Bk)−
∑

j∈Sv∩Bk

∫ x̄

x

dyj(x), ∀Bk ∈ B. (2.8)

w(S,B) becomes:

w′(S,B) =

{
w(S,B)−∆ if S ∩ P 6= ∅
w(S,B), otherwise

where α(S) =
∑

j∈S α(j), β(S) is likewise defined, and

• x̄ = xj (y(j)− β(j)),

• x = xj (y(j)− β(j))− α(j),

• ȳ = y(j), and

• y = y(j)− β(j).

We choose α and β so that:

e(Sv, x) = v′(Sv)− x(Sv) + α(Sv) +
∑

j∈Sv∩Sw

∫ ȳ

y

dxj(y) > 0

e(Sw, y,B) = w′(Sw,B′)− y(Sw) + β(Sw) +
∑

j∈Sw∩Sv

∫ x̄

x

dyj(x) > 0

for some sets Sv and Sw. Since e(Sv, x) = 0 when Sv = Pi for some Pi ∈ P and e(Sw, y) = 0
when Sw = Bk for some Bk ∈ B, these will be restrictions on Sv and Sw. Now the following
allocations are feasible under v′ and w′:

x′(j) = x(j)− α(j)−
∫ ȳ

y

dxj(y)

y′(j) = y(j)− β(j)−
∫ x̄

x

dyj(x).
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First we show that (x′, y′,P ,B) is in the core of cores of the perturbed game G′ = 〈N, v′, w′,%
〉. Consider the excess for a coalition S partitioned as S:

e∗(S, G′, x′, y′) = w′(S,B)− y′(S)−
∑
j∈S

∫ x′∗

x′(j)
dyj(x).

Here we can break y′(S) down as follows

y′(S) = y(S)− β(S)−
∑
j∈S

∫ x̄

x

dyj(x).

Note also that ∫ x′∗

x′(j)
dyj(x) =

∫ x′∗

x(j)

dyj(x) +

∫ x(j)

x′(j)
dyj(x).

Then e∗(S, G′, x′, y′) becomes

e∗(S, G′, x′, y′) = w′(S,B)− y(S) + β(S)

+
∑
j∈S

[∫ x̄

x

dyj(x)−
∫ x(j)

x′(j)
dyj(x)

]

−
∑
j∈S

∫ x′∗

x(j)

dyj(x).

Next we show that

β(S) =
∑
j∈S

[∫ x(j)

x′(j)
dyj(x)−

∫ x̄

x

dyj(x)

]
. (2.9)

To do so, we first demonstrate that x = x′(j):

xj (y(j)− β(j))− α(j) = x(j)− α(j)−
∫ ȳ

y

dxj(y)

xj (y(j)− β(j))− x(j) = −
∫ ȳ

y

dxj(y).

where xj(y) = xj(y(j)− β(j)) and x(j) = x(ȳ). This means that equation 2.9 becomes

β(S) =
∑
j∈S

[∫ x(j)

x̄

dyj(x)

]
.

Recall that x̄ = xj(y(j)− β(j)). Therefore we have

β(S) =
∑
j∈S

[y(j)− y(j) + β(j)]

=
∑
j∈S

β(j).
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Finally, we are left with

e∗(S, G′, x′, y′) = w′(S,B)− y(S)−
∑
j∈S

∫ x′∗

x

dyj(x).

If S ∩P = ∅ then this is identical to e∗(S, G, x, y). Thus we have that x′∗ = x∗ for every S.
And because (x, y,P ,B) is in the core of cores of G, then (x′, y′,P ,B) is in the core of cores of
the perturbed game G′.

If S ∩ P 6= ∅ then we have

e∗(S, G′, x′, y′) = w(S,B)−∆− y(S)−
∑
j∈S

∫ x′∗

x

dyj(x).

The fact there are Pi in S changes the constraints. Instead of
∑

j∈Si
x′∗ = v(Si) for all

Si ∈ S, we have
∑

j∈Si
x′∗ = v′(Pi) for some Si ∈ S. And since we allow v′(Pi) be strictly

greater than v(Pi), our perturbation must account for this. So we look for an upper bound on
the difference:

D(x′∗, x∗) = −
∑
j∈S

∫ x′∗

x

dyj(x) +
∑
j∈S

∫ x∗

x

dyj(x) = −
∑
j∈S

∫ x′∗

x∗
dyj(x).

To attain this upper bound, we assume neither x′∗j ≥ 0 nor yj(x
′∗) ≥ 0 are binding for any

j ∈ Pi ∈ S. Hence D(x′∗, x∗) is maximized. Then it follows that

v′(Pi)− v(Pi) = −α(Pi)−
∑
j∈Pi

∫ ȳ

y

dx(y).

Using the convexity of preferences, we get an upper bound:

∆ =
∑
Pi∈S

[
v′(Pi)− v(Pi)

|Pi|
] ∑

j∈Pi

(−dyj(x
∗)

dx

)
.

We must show that this implies w′(S,B′) ≥ 0, and when it is written out, it becomes

w(S,B′)−
∑
Pi∈S

[∑
j∈Pi

(−dyj(x
∗)

dx

) [
−α(j)−

∫ ȳ

y

dxj(y)

]]
≥ 0.

It can be rewritten as:

(−α̃− x̃(y) + x̃(y − β)) · −∇ỹ(x∗) ≤ w(S,B′).

where x̃ is the vector with elements x(j) indexed by j ∈ Pi for each Pi ∈ S, x̃(y − β) and α̃

are similarly defined, and ∇ỹ(x∗) is the vector of derivatives
dyj(x

∗)
dx

indexed by j ∈ Pi for each
Pi ∈ S.
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Ultimately, the constraints on α and β are

x(j)− α(j)− x(ȳ + x(y) ≥ 0

y(j)− β(j)− y(x̄) + y(x) ≥ 0 ∀j ∈ N

α(Sv) +
∑

j∈Sv∩Sw

[xj(ȳ)− xj(y)] > x(Sv)− v(Sv)

β(Sw) +
∑

j∈Sw∩Sv

[yj(x̄)− yj(x)] > y(Sw)− w(Sw,B′)

∇ỹ(x∗) · [x̃(y − β)− α̃] ≥ x̃(y) · ∇ỹ(x∗)− w(S,B′).
Where the third constraint must hold for every S such that S ∩ P 6= ∅.
Next we must show that non-zero vectors α and β always exist. The simplest way to do

so is to first recognize that this construction does not rely on which elements of the respective
cores, Co(N, v) and Co(P , w) are chosen. Then we know that there exists a subset Sv 6= Pi for
any Pi ∈ P and a core allocation x such that x(Sv) = v(Sv). Likewise, there exists a subset
Sw 6= Bk for any Pi ∈ B and a core allocation y such that y(Sw) = w(Sw,B′). That is, in both
cases we simply choose one of the core allocations that gives a subset of the players zero excess.

From this point, the following construction of α and β satisfies every constraint as long as
we choose Sv ∩ Sw 6= Sw. We begin with Sw. Choose one member of Sw, called j∗, that is not
equal to the intersection of Sw and any member of the partition P .

1. For all j 6= j∗ in Sw, β(j) = 0 and α(j) = 0

2. β(j∗) = ε̄ and α(j∗) = 0

For all members of Sv, β(j) = 0 and α(j) = x(j). The above constraints are reduced to:

x(j)− α(j) ≥ 0, or

y(j)− β(j) ≥ 0 ∀j ∈ N

x(Sv) > 0

ε̄ > 0 (2.10)

∇ỹ(x∗) · [x̃(y − β)− α̃] ≥ x̃(y) · ∇ỹ(x∗)− w(S,B′).
The first four constraints are trivially satisfied. For the final constraint, there are 2|P|

combinations of Pi ∈ P . For each, the right hand side is negative or zero (only if w(S,B′) and
the sum of x(j) for all j ∈ Pi for all Pi ∈ P are both zero). By construction, the left hand side
is positive for all values of β(j∗) such that ε̄ ≥ β(j∗) ≥ 0. We are then left with an open set

{(α, β(ε)) : ε̄ ≥ β(j∗) > 0} .

where the strict inequality comes from inequality 2.10 in the list of constraints above.

Theorem 2 says that for every core of cores consisting of stable components, there is an
open set of perturbed games where a core of cores consisting of unstable components exists.
This also suggests that the structure (P ,B) is persistent. It often (i.e. in an open set) remains
a part of the core of cores even when the game is perturbed.

15



2.2 Extensions of the Model

2.2.1 Nontransferable Payoffs with Transferable Payoffs

It is straightforward to allow any combination of transferable and nontransferable payoffs to
be used on levels one and two. For nontransferable payoffs on level one we would have the
traditional V (S) ⊆ X, where X is the set of all possible outcomes for the coalition formation
game on level one. For level two we would have W (Bk,B) ⊆ Y , where Y is the set of all
possible outcomes for the coalition formation game on level two. The following definition
extends the model to a game in which level one payoffs are nontransferable and level two
payoffs are transferable.

Definition 2.4. A coral game in nontransferable and transferable payoffs is given by
〈N, V, X, w %〉, where N is the number of players, V (·) assigns a subset of X to an element of
P , w(·, ·) assigns a real number to an element of B, and % represents preferences over X ×R+.

Here the core of cores is defined for a game with transferable payoffs on level two and
nontransferable payoffs on level one.

Definition 2.5. (x, y,P ,B) is in the core of cores of 〈N, V, X, w %〉 if @S ⊂ N , with partition
S = {S1, S2, ...}, and (x′, y′,P ′,B′) such that (x′, y′) ÂS (x, y) where x′ ∈ V (Si) ⊂ X for all
Si ∈ S and

∑
j∈S y′j = w(S,B), and P ′ = {P \ S,S} and B′ = {B \ S, S}.

Next, the definition of the excess is adjusted to suit a game with transferable payoffs on
level two and non transferable payoffs on level one.

Definition 2.6. For a coral game 〈N, V, X, y, %〉 and allocations (x, y,P ,B) let the excess,
e∗(S), for a partition, S, of a subset of players, S ⊂ N , be the maximized value of e(S) with
respect to x′. Define e(S) as the following:

e(S) = [w(S,B′)− y(S)]−
[∑

j∈S

[
yj(x

′
j)− yj(xj)

]
]

(2.11)

and the constraints are

x′ ∈ V (Si) ⊂ X for each Si ∈ S, and

yj(x
′) ≥ 0 for each j ∈ S,

where B′ = {B \ S, S} and yj(x
′) solves Uj(x

′
j, y(x′)) = Ūj = Uj(x, y).

The excess function is the sum of the level one and level two gains and losses accrued to S
by deviating as a coalition of coalitions. Again, the level one payoffs are converted to level two
payoffs in order to measure level one gains (or losses).

Theorem 3. (x, y,P ,B) is in the core of cores of 〈N, V,X,w, %〉 if and only if e∗(S) ≤ 0 for
every partition, S, of every subset S ⊂ N .
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Proof. First, we prove that, given x∗ (the allocation of V (Si) that maximizes e(S)) the condition
that e∗(S) ≤ 0 is sufficient to have that there is no feasible allocation y′ such that (x∗, y′) ÂS

(x, y). Next we will prove that, if it is sufficient given x∗, then it is sufficient for any feasible x′.
Going from x to x∗ while keeping Uj = Uj(x, y) for each j implies some change in level two

payoffs. This is

∆yj = yj(y)− yj(x
′) (2.12)

where yj(·) solves Uj(x
′
j, y(x′)) = Uj(x, y)

If x∗j -j xj, then agent j must be compensated in the amount of equation 2.12 in level two
payoffs to keep his utility the same as when he gets (x, y). On the converse, if x∗j %j xj then j
can give up level two payoffs in the amount of equation 2.12 and be just as well off as when he
gets (x, y).

Summing over j ∈ Si we get the net minimum gain in level two payoffs necessary to keep
everyone in S as well off as before. Alternatively, this could be called the net maximum loss in
level two payoffs necessary to keep everyone in S as well off as before.

Assigning level one payoffs so that each j prefers (x∗, y′) to (x, y), let

y′j > yj + yj(x)− yj(x
∗).

The question is whether or not y′ is feasible. This requires that
∑

j y′j ≤ w(S,B′). Putting this
requirement together with the level two payoffs above, we get

w(S,B′) >
∑
j∈S

yj + yj(x)− yj(x
∗) = y(S) + [

∑
j∈S

yj(x
′)− yj(x)].

However, this contradicts e∗(S) ≤ 0. The converse must also hold, that (x, y) is weakly preferred
by all members of S to (x∗, y′) whenever e∗(S) ≤ 0 holds.

To see why no other feasible (x′, y′) is preferred by S to (x, y), consider that x∗ maximizes
e(S) by minimizing

−
[∑

j∈S

[
yj(x

′
j)− yj(xj)

]
]

,

and that x, y(S) and w(S,B′) are given. Therefore, if e(S) is ever greater than zero, it must
be so for x′ = x∗.

According to the definition of the core of cores, an allocation (x, y) must be strictly preferred
to (x′, y′) by all members of any deviating coalition, S, in any partition, S. So if e∗(S) ≤ 0 for
some S then there is no allocation (x∗, y′) such that S prefers it to (x, y), and so S cannot viably
deviate. If this holds for all S and S ⊂ N , then there are no viable deviators and (x, y,P ,B)
is in the core of cores.

The fact that the conditions are also necessary for (x, y,P ,B) to be in the core of cores
follows trivially from the argument above. That is, if not e∗(S), then by the above argument,
there exists feasible allocations (x∗, y′), where y′j equals the right hand side of inequality 2.15
plus ε > 0, such that every member of S strictly prefers (x∗, y′,P ′,B′).
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2.2.2 Multiple Levels

It is also straightforward to extend the coral games model to an arbitrary number of levels.

Definition 2.7. A T-level organizational structure, P = {P1, ...,PT}, is a T -level structure
where Pt = {Pt1, Pt2, ...} is a partition of Pt−1 and P1 is a partition of N .

A function vt assigns payoffs on level t of an organizational structure. The game at each
level of the structure can be given by a characteristic function or a partition function. In either
case, the payoffs can be transferable or nontransferable. For the current exposition a partition
function with transferable payoffs is assumed. For each element, Ptj, of the partition Pt on
each level t of the T-level organizational structure the function vt(Pt,j,Pt) assigns a positive
real number, that is the worth of that coalition: vt : Pt × Ω(Pt−1) −→ R.

Definition 2.8. A T co-dependent organizational levels (or T-coral) game in transfer-
able payoffs is given by 〈N, T,v,%〉, where N is the number of players, v = {v1, ..., vT} where
vt governs the payoffs on level t and % represents preferences over payoffs x = (x1, x2, ..., xT ).

Before we define the stability concept for T-coral games, we must first say what constitutes
a deviating coalition. This will then be a subset, S ⊂ N , that partitions into a T-level organi-
zational structure S = {S1, ...,ST}, where St = {St1, St2, ...} is a partition of St−1 and S1 is a
partition of S ⊂ N .

Definition 2.9. (x,P) is in the T core of cores of the T-coral game in transferable payoffs
〈N, T,v,%〉 if @S ⊂ N , with organizational structure S and (x′,P ′) such that x′ ÂS x where

∑
j∈Sti

x′t,j = vt(Sti,P ′t) ∀(Sti) ∈ S and P ′t = {Pt \ S, {St}} ∀t.

For the following definition and theorem we assume that all vt are partition functions.
However, in order to allow vt to be a characteristic function for some t, one only needs to
change vt(Sti,P ′) to vt(Sti).

Definition 2.10. For a T-coral game in transferable payoffs, 〈N,v,%〉 and allocations (x,P),
let the excess, e∗(S), be the maximized value of e(S) with respect to x′−T = {x′1, ..., x′T−1}.
Define e(S) as the following:

e(S) = [vT (S,P ′T )− xT (S)]−
[∑

j∈S

∫ x′T−1,j

xT−1,j

· · ·
∫ x′1,j

x1,j

T−1∑
t=1

dxT,j(xt,j)

dxt,j

T−1∏
t=1

dxt,j

]
(2.13)

and the constraints are
∑
j∈Sti

x′t,j ≤ vt(Sti,P ′t)

x′t(j) ≥ 0

xT,j(x
′
t,j) ≥ 0, for t < T and all j ∈ S,

where P ′t = {Pt \ S,St} and
dxT,j(xt,j)

dxt,j
is player j’s marginal rate of substitution between level

T and level t payoffs when Ūj = Uj(x1,j, ..., xT,j).
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Theorem 1 (revisited for T levels). (x,P) is in the core of cores of 〈N,v,%〉 if and only if
e∗(S) ≤ 0 for every T -level structure, S, of every subset S ⊂ N .

Proof. First, we will prove that, given x∗−T (the allocation of payoffs from levels 1 through T −1
that maximizes e(S)) the condition that e∗(S) ≤ 0 is sufficient to have that there is no feasible
allocation x′T such that (x∗−T , x′T ) ÂSi

(x−T , xT ). Next we will prove that, if it is sufficient given
x∗−T , then it is sufficient for any feasible x′−T .

Going from x−T to x∗−T along the level set Ūj = Uj(x−T , xT ) implies some change in xT,j(·)
in order to keep j’s utility constant. By the implicit function theorem, this is

xT,j(·) =

[∑
j∈S

∫ x∗T−1,j

xT−1,j

· · ·
∫ x∗1,j

x1,j

T−1∑
t=1

dxT,j(xt,j)

dxt,j

T−1∏
t=1

dxt,j

]
. (2.14)

If the constrained optimization implies x∗−T,j Â x−T,j, then agent j must be compensated in
the amount of equation 2.14 in level T payoffs to keep his utility the same as when he gets xj.
On the converse, if x∗−T,j ≺ x−T,j then j can give up level T payoffs in the amount of equation
2.14 and be just as well off as when he gets xj.

Summing over j ∈ S we get the net minimum gain in level T payoffs necessary to keep
everyone in S as well off as before. Alternatively, this could be called the net maximum loss in
level T payoffs necessary to keep everyone in S as well off as before.

Assigning payoffs from levels 1 to T − 1 so that each j prefers (x∗−T , x′T ) to x, let

x′T,j > xT,j +

∫ x∗T−1,j

xT−1,j

· · ·
∫ x∗1,j

x1,j

T−1∑
t=1

dxT,j(xt,j)

dxt,j

T−1∏
t=1

dxt,j. (2.15)

The question is whether or not x′T is feasible. This requires that
∑

j x′T,j ≤ vT (S,P ′T ). Putting
this requirement together with the level 1 through T − 1 payoffs above, we get

vT (S,P ′T ) >
∑
j∈S

[
xT,j +

∫ x∗T−1,j

xT−1,j

· · ·
∫ x∗1,j

x1,j

T−1∑
t=1

dxT,j(xt,j)

dxt,j

T−1∏
t=1

dxt,j

]

= xT (S) +
∑
j∈S

∫ x∗T−1,j

xT−1,j

· · ·
∫ x∗1,j

x1,j

T−1∑
t=1

dxT,j(xt,j)

dxt,j

T−1∏
t=1

dxt,j.

However, this contradicts e∗(S) ≤ 0. The converse must also hold, that x is weakly preferred
by all members of S to (x∗−T , x′T ) whenever e∗(S) ≤ 0 holds.

To see why no other feasible x′ is preferred by S to x, consider that x∗−T maximizes e(S)
by minimizing

∑
j∈S

∫ x∗T−1,j

xT−1,j

· · ·
∫ x∗1,j

x1,j

T−1∑
t=1

dxT,j(xt,j)

dxt,j

T−1∏
t=1

dxt,j

and that x−T , xT (S) and vT (S,P ′T ) are given. Therefore, if e(S) is ever greater than zero, it
must be for x′−T = x∗−T .
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According to the definition of the core of cores, an allocation x must be strictly preferred
to x′ by all members of any deviating coalition, S, in any partition, S. So if e∗(S) ≤ 0 for
some S then there is no allocation (x∗−T , x′T ) such that S prefers it to x, and so S cannot viably
deviate. If this holds for all S and S ⊂ N , then there are no viable deviators and (x,P) is in
the core of cores.

The fact that the conditions are also necessary for (x,P) to be in the core of cores follows
trivially from the argument above. That is, if not e∗(S), then by the above argument, there
exists feasible allocations (x∗−T , x′T ), where x′−T,j equals the right hand side of inequality 2.15
plus ε > 0, such that every member of S strictly prefers (x∗−T , x′T ).

3 Political Parties

In this section, a simple example clarifies the themes and results of coral games. As with all
coral games, this example involves organization on different levels, each with separate payoffs.

On level one, politicians partition into parties. On level two, the parties play a simple
majority game. These levels are co-dependent in that the outcome of the interaction between
parties relies on which parties form and vice versa. Therefore, we should expect agents to make
tradeoffs between payoffs on each level.

3.1 Setup

Assume that there are five politicians, N = {1, 2, 3, 4, 5}. They each have political beliefs
measured in a single dimension. Let player j’s beliefs be given by tj, and order them so that
tl > tj if and only if l > j. For simplicity, assume that political beliefs are equally-spaced, so
that tl − tj = 1 for all consecutive l and j where l > j.

As mentioned, politicians partition into political parties. Denote this partition as P =
{P1, ..., PI}. Let f(Pi) measure the benefit to a politician of being in a party Pi ⊆ N , of size
|Pi|, where f ′(·) > 0 and f ′′(·) < 0. We also normalize so that f(Pi) = 0 if |Pi| = 1. Either of
the functions

f(Pi) = ln(|Pi|)
or

f(Pi) = 1−
(

1

2

)|Pi|−1

will suffice.
Being in a party where the average belief differs from one’s own is a drawback, so we discount

f(Pi) by b|tj − t̂i| + 1 where t̂i is the average political belief of the members in Pi and b is a
positive number. Ultimately, the payoff to politician j of being in a party Pi is

Vj(Pi) = x(j) =
f(Pi)

b|tj − t̂i|+ 1
.

Once the politicians partition into parties, the parties compete for political power. We
model this as a simple majority game with a small twist. The interaction between the parties
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Rank Position Rank Position
1 (5,0) 6 (3,1)
2 (3,0) 7 (4,1.5)
3 (4,.5) 8 (5,2)
4 (2,.5) 9 (1,0)
5 (5,1)

Table 1: Rankings of political positions

requires that no politician may join a coalition of parties unless her entire party joins. In that
way, the interaction between the parties leads to a partition of the parties, or a partition of the
partition of N . Once again, denote this structure as B = {B1, ..., BK}.

When a coalition of parties, Bk, contains three or more politicians (a majority of five), they
wield political power w(Bk) = 2 − .5(t̄ − t), where t̄ is the belief of the right-most politician
in Bk, and t is the belief of the left-most politician in the same coalition of parties. The
negative second term (-.5(t̄− t)) reflects a reduction in the power of coalitions whose members
have a wide range of political beliefs. The reduction can be due to increased infighting and
compromising. When they do not have a majority, a coalition of parties, Bk has zero political
power (w(Bk) = 0). Bk is free to divide its power among its members however it chooses. An
allocation, y, of w(Bk) must satisfy

∑
j∈Bk

y(j) ≤ w(Bk).
Summarizing, the utility function of politician j is then

Uj(x, y) = x(j) + αy(j)

where −1/α is the constant marginal rate of substitution between payoffs on level one and level
two.

3.2 Analysis

3.2.1 Stability on Each Level

To begin, assume away the interaction between the parties to look at the partitions of N that
yield stability with respect to the party formation game. Then find each politician’s preferences
over outcomes of the form (|S|, |t − t̂S|), where the first argument gives the size of the party
and the second gives the politician’s distance from the party’s average political view. If

b >
f(5)− f(2)

f(2)− .5f(5)

then table 1 gives rankings over positions in connected parties (i.e. {1, 2, 3} rather than
{1, 2, 4}):

The rankings follow from the fact that

f(5)

b + 1
>

f(3)

b + 1
>

f(4)

1.5b + 1
.
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0.5

1
|S| = 2
|S| = 3
|S| = 4
|S| = 5

Figure 1: Party formation payoffs

The payoffs are summarized in figure 1 where each of the curves represents a different-sized
party, and the height represents the payoffs to a politician in the given position.

From this it is clear that the following and their mirror images are the only stable structures
of the party formation game 〈N, V, %〉.

1. P = {P1, P2, P3} where P1 = {1, 2}, P2 = {3}, and P3 = {4, 5}
2. P = {P1, P2, P3} where P1 = {1, 2}, P2 = {3, 4}, and P3 = {5}
3. P = {P1, P2} where P1 = {1, 2} and P2 = {3, 4, 5}.
For the game among coalitions, it is clear that no stable structure exists. That is, for every

partition B and payoffs y, there is a majority subset of N , S 6= Bk, such that y(S) < 2−.5(t̄−t).

3.2.2 Creating Instability from Stability

As just demonstrated, there does not exist a (x, y,B,P) such that (x,P) ∈ Co(N, V ) and
(y,B) ∈ Co(P , w). So it is important to ask if the power sharing game will destabilize structures
that are stable on level one. To answer this question, we use the tools from the results section
above.

To begin, consider the first stable partition of the party formation game, where P =
{P1, P2, P3}, P1 = {1, 2}, P2 = {3}, and P3 = {4, 5}. For the sake of the power sharing
game, consider the feasible payoffs y and the partition B = {B1, B2}, where B1 = {P1} and
B2 = {P2, P3}.

S = {1, 2, 3} is a viable deviating coalition for the partition, S = {S1, S2} where S1 = {1}
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and S2 = {2, 3}, when y(3) < 1. To see this, consider S’s excess function,

e∗(S) = w(S,B)− y(S)−
∑
j∈S

[yj(x
∗)− yj(x)]

= 1− 1− 1

α

[
f(2)

.5b + 1
− f(1) + f(1)− f(2)

.5b + 1

]
,

which is greater than zero if y(3) < 1 and zero if y(3) = 1.
For the case where y(3) = 1, the disconnected coalition S = {1, 2, 4} is capable of deviating.

First note that S improves from y(S) = 0 to y′(S) = 2− .5(3) = .5 in the power sharing game.
Now suppose they are partitioned as S = {S1, S2} where S1 = {1, 2} and S2 = {4}. Putting
this into the excess function, we get

e∗(S) = .5− 1

α

[
0 + 0 +

f(2)

.5b + 1
− f(1)]

]
.

Therefore, if α > 2 f(2)
.5b+1

then the excess is greater than zero, and S = {1, 2, 4} can viably
deviate.

In this case, by introducing a game among coalitions, we have destabilized the structure
P = {P1, P2, P3}, where P1 = {1, 2}, P2 = {3}, and P3 = {4, 5}, as corollary 3 suggests. When
y(3) = 1, S = {1, 2, 4} can deviate. When y(3) < 1, S = {1, 2, 3} can deviate.

3.2.3 Creating Stability from Instability

As shown above, the power sharing game among coalitions can have a destabilizing effect on
stable party structures. However, we would also like to know if the party formation game can
have a stabilizing effect on the power sharing game. The following analysis demonstrates how
this can occur.

Consider the stable party structure P = {P1, P2} where P1 = {1, 2} and P2 = {3, 4, 5}. Let
us put this together with the structure B = {B1, B2} where B1 = P1 and B2 = P2. We again
attempt to see if S = {1, 2, 3} is a viable deviating coalition for any partition S. If y(3) = 1,
then we immediately see that S = {S} cannot deviate because politician three gets the same
payoff on level one and two as before. Because w(B1,B) = 0, therefore y({1, 2}) = 0, and so
there is no margin for making player 3 better off.

Therefore we consider the structure S = {S1, S2} where S1 = {1} and S2 = {2, 3}. The
excess is

e∗(S) = w(S,B)− y(3)−
∑
j∈S

[yj(x
∗)− yj(x)]]

= 1− y(3)− 1

α

[
−f(1) +

f(2)

.5b + 1
− f(2)

.5b + 1
+

f(3)

b + 1

]

where f(3)
b+1

> f(1) = 0. From this we see that the coalition S = {1, 2, 3} cannot disrupt the

structure (P ,B) when y(3) ≥ 1− 1
α

f(3)
b+1

.
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Because the connected coalition can not viably deviate, we look to see if the disconnected
coalition S = {1, 2, 4} can. Just like above, w(S,B′) = .5, and when y(3) = 1 we have that
y({1, 2, 4}) = 0. Assume that S partitions as S = {S1, S2} where S1 = {1, 2} and S2 = {4}. S
has excess

e∗(S) = .5− 0− 1

α
[f(3)] .

Then, given y(3) = 1, S = {1, 2, 4} can deviate if α > 2f(3). However, since the excess
for S = {1, 2, 3} is strictly less than zero when y(3) = 1, we have some slack in maintaining
stability with respect to the connected coalition S = {1, 2, 3}. Specifically, as long as y(3) ≥
1 − 1

α
f(3)
b+1

, (P ,B) is robust to deviations by partitions of S = {1, 2, 3}. Therefore, we assign

y(4) = 1− y(3) = 1− (1− 1
α

f(3)
b+1

). S’s excess then becomes:

e∗(S) = .5 +
1

α

f(3)

b + 1
− 1

α
[f(3)] .

This means that if α ≥ 2f(3)
[

1
b+1

+ 1
]

then (P ,B) is robust to deviations by connected
and disconnected coalitions. Thus, we have created stability on level two despite the fact that
the core of the power sharing game is empty.

4 Conclusion

One of the contributions of this paper is to generalize the coalitional theory to a model of multi-
level structures called coral games. Cross-sections of multi-level structures are handled well by
characteristic and partition functions. Therefore, these functions are the building blocks of the
coral games framework.

Another contribution is to add to the understanding of complexity in game theory by ana-
lyzing the persistence of equilibria from simplified models that are embedded in larger systems.
Traditionally, coalitional game theory looks at equilibria in cross sections of a multi-level struc-
ture. However, as emphasized in this paper, levels can be particularly sensitive to the influence
of “nearby” games. The analysis of coral games establishes that stability can have a more com-
plex nature than previous models have allowed. It can arise from any combination of stable and
unstable components. Instability can also arise from any combination of stable and unstable
components.

Political economy, which so often involves group actions, a preponderance of multi-level
structures and multi-dimensional payoffs is a particularly fruitful area for applying the ideas in
coral games. Interesting topics include political party interaction, coalitions of lobbyists and
constitutional design.

However, applications of the coral games framework are not limited to political economy. In
international trade, this type of analysis might be applied to the question of whether regional
trade agreements lead to more general multilateral trade agreements [see Wei and Frankel
(1996); Frankel, Stein, and Wei (1996); Yi (1996)]. It may also be useful in analyzing trends
in labor organization by allowing for the structure and differential influences of labor confed-
erations [see Chaison (1980)]. In terms of industrial organization, the coral games framework
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might shed light on the effect of research consortia on market structure [see Spence (1984); Katz
(1986)]. And finally, the coral games framework might help us understand the types of global
environmental agreements that can be reached by simultaneously accounting for international
coalitions and the domestic coalitions that underlie them [see Eyckmans and Tulkens (2003)].
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