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Heteroskedasticity-Robust Elasticities in Logarithmic  
and Two-Part Models 

 
 
 

Abstract 
 
Logarithmic models are widely used to study highly skewed positive 
outcomes, either alone or in combination with an equation that first 
distinguishes between zero and non-zero values (the two part model). 
A well-known drawback of such models is that to obtain marginal 
effects that pertain to the arithmetic mean, rather than the mean of 
logs, we must exponentiate, and this retransformation is complicated 
in the presence of heteroskedasticity. This paper presents a simple 
method for correcting estimated elasticities for the effects of 
heteroskedasticity, in both log-linear and log-log (constant elasticity) 
equations. An example, drawing on Bulgarian farm survey data, 
demonstrates that this correction leads to significantly different 
estimates of the elasticity of expenditures on agricultural inputs with 
respect to land area and the age of the household head. 
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1. Introduction 

 Few functional forms are as widely used in the social sciences to study highly skewed 

positive outcomes as is the logarithmic specification, which reduces the leverage exerted by 

extreme values, producing more robust and often more efficient estimates (Deb, Manning, and 

Norton 2005).  However, many outcomes have distributions that are characterized not only by a 

long right tail, but also by a large spike at zero, for which the log is undefined.  Examples include 

expenditures on consumer durables and investment goods, number of cigarettes smoked, and 

countless others.  Two-part models, the first part consisting of a probit, logit, or linear equation 

to distinguish between zero and positive values, and the second part using OLS on the logs of the 

positives, are well-suited to such outcomes.  Unlike the Tobit, the two-part model allows the use 

of logs, and also allows different parameters to determine the two parts of the data-generating 

process.  Two-part models are also arguably more appropriate than Heckman-style selection-bias 

models when the zero values represent outcomes of interest, rather than censored values of a 

latent variable, or data that have been made missing by taking the log of zero (Duan, et al. 1984). 

 Yet the log form has the drawback of generating estimates of marginal effects on the 

conditional mean of the log of the outcome, not on the conditional mean of the outcome itself, 

which is usually of more interest.  Although many economists ignore this difference, some, 

primarily health economists, have taken these concerns seriously, and have developed 

retransformation techniques that produce consistent estimates of the desired expected values, and 

marginal effects.  This is straightforward if the error terms in the logged equation are 

homoskedastically normal, but is more complicated in the presence of non-normality, and, 

especially, heteroskedasticity (Duan 1983; Mullahy 1998).  
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 This paper describes an approach to this problem that is applicable when we wish to 

express our marginal effects as elasticities.  I use a procedure suggested, but not pursued 

explicitly, by Mullahy (1998), to test the proposition that the retransformation problem is 

ignorable, and to correct the estimated elasticities if it is not.  An empirical example, based on a 

model of expenditures on variable inputs by Bulgarian family farmers, demonstrates that these 

corrections may be non-trivial. 

 

 

2. The Retransformation Problem 

 Consider a semi-log equation of the following form, defined only for y > 0: 

[1]   uXy += βln  with 0)|( =XuE . 

To find the conditional mean of y, as opposed to ln y, we first take antilogs, then expectations: 

[2]   )|(),0|( XeEeXyyE uXβ=>  

If u is normal and homoskedastic, with variance σ2, then 2)|( 2σ=XeE u , but Duan (1983) 

notes that violations of this assumption render this approximation inadequate.  Duan’s solution is 

to estimate )|( XeE u  using ∑− uen ˆ1 , the average of the antilogged residuals from [1].  This 

estimator makes no assumptions about the distribution of u, performs well for non-normal errors, 

and can accommodate heteroskedasticity, provided it is not related to the covariates of interest. 

 To illustrate why this last proviso is important, take the partial derivative of [2] with 

respect to some xk; the matrix X now contains the remaining covariates. 
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If the second term of this expression is zero, then Duan’s estimator of the expectation in the first 

term suffices.  But if u is heteroskedastic in xk, the latter term will generally not be zero.   

 The algebra is simpler if we are interested in the elasticity of y with respect to xk  )( y
xk

ε : 
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, then Duan’s estimator is not needed: in calculating elasticities, 

under the assumption of homoskedasticity (or the stronger assumption of the independence of xk 

and u), there is no retransformation problem, a statement which does not apply to the marginal 

effects of equation [3].  However, if u is heteroskedastic in xk, then the second term in [4] again 

cannot be ignored.   

 If the covariate of interest enters in log form (ln xk) then [4] becomes: 
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Now  xk drops out of the first term, and under the model for ),|( k
u xXeE  that we will soon 

describe, the second term is constant with respect to [X , xk] as well.  The log-log model thus 

produces a constant elasticity with respect to a logged covariate ( y
xk

ε ) even after correcting for 

heteroskedasticity.  By contrast, both parts of [4] depend on [X , xk]; in estimating them the mean 

elasticity across observations is reported.   

 Next consider a two-part model, whose first equation models the probability of a positive 

outcome, using a probit.  Two versions are presented, first with xk in levels and then again with xk 

in logs: 
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[5]   )(),|0Pr( kkk xXxXy γγ +Φ=> ,  

[5’]   )ln(),|0Pr( kkk xXxXy γγ +Φ=> ,  where Φ is the cumulative standard 

normal.  For the positive values, we have:  

[6]   uxXy kk ++= ββln   and  

[6’]   uxXy kk ++= lnln ββ  with 0),|( =kxXuE .  

 The expected value of y is then: 

[7]   ),,0|(*),|0Pr(),|( kkk xXyyExXyxXyE >>= ,  

and differentiating this with respect to xk allows us to compute the elasticity of interest )( y
xk

Λ .  

For a covariate entering in levels [8], or logs [8’], we get: 
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The first term of the rightmost expression is the elasticity of the probability of y’s being positive, 

with respect to xk,1 and the second terms are as in [4] and [4’]. 

 There are thousands of examples of equations like [6] or [6’] in the economics literature 

whose authors interpret the coefficients kβ , or kk xβ  in log-linear settings, as elasticities.  

However, both are elasticities of the conditional mean of the log of y, not of y itself, with respect 

to xk.  The difference is that between
kx

XyE
ln

)|(ln
∂

∂ , which is equivalent to [8], and 
kx

XyE
ln

)|(ln
∂

∂ , 

which is not.  Wooldridge (2002, p. 17) notes that “For the most part, little is lost by treating [the 

two] as the same when y > 0.”  Yet to do so is to ignore the retransformation problem.  

Moreover, the first term in [8] pertains to a conditional mean probability, not a conditional mean 
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log probability.  Thus even if we were content to speak of elasticities at the mean of logs for the 

positive values, to avoid the retransformation problem, this would still be inconsistent with the 

way the elasticity of the probability of positive outcomes is defined. 

 The last step is to estimate 
k

k
u

x
xXeE

∂
∂ ),|(

.  Mullahy (1998) suggests (pp. 15-16) that 

since eu is necessarily positive, it makes sense to model its conditional expectation exponentially: 

[9]   )(),|( kxkXexXeE k
u λλ +
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[9’]   )ln()ln,|( kxkXexXeE k
u λλ +

=  

Estimates of λ and λk may be generated by non-linear least-squares regression of the antilogged 

residuals )( ûe against all covariates in the model, including a constant.  Given this setup, λk is the 

final term in [8] or [8’]: 
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 Mullahy does not calculate this estimator explicitly, but does present several related 

alternatives, and shows how estimates of the term kλ̂ effectively reconcile the differences 

between his estimators and the homoskedastic two-part model that uses Duan’s scalar smearing 

adjustment.  I prefer the approach outlined here because, unlike Mullahy’s alternatives, equation 

[10] incorporates a direct estimate of kλ̂ , and, in principle, a means for testing whether this 

parameter is small enough to ignore.  That test rests on heteroskedasticity- and cluster-robust 

standard errors; however, Mullahy cautions that these have not been shown to be consistent for 
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this application, and must be interpreted with care.  As an alternative, I also present bootstrapped 

standard errors, for each component of [10] and [10’], and for their sum.  Note that the bootstrap 

re-samples survey clusters, not households. 

 

 

3. An Empirical Example 

 The data for this example come from a recent survey from Bulgaria, described in more 

detail in ([Self] 2007).  A two-part model is used to predict total expenditures on variable inputs 

such as feed and herbicides, for a sample of 1206 family farms.  Seventy-five percent (n=907) 

had positive expenditures, with a mean of $US 623, but with a highly skewed distribution 

(minimum $5, maximum $18,333).  For this exercise, the covariates are the log of non-farm 

income, the log of land under cultivation, the number of farm implements owned, an indicator 

for households owning livestock, and the household head’s age. 

 The first column of Table 1 reports the probit estimates of equation [5], expressed as 

marginal effects on )0Pr( >y , not elasticities.  The next column reports estimates of β, from 

equation [6], for households with positive expenditures.  All coefficients are of the same sign as 

the probit results: for example, older heads are less likely to purchase variable inputs, and spend 

less when they do.  The final column reports the non-linear least squares estimates of λ, from 

equation [9].  We see significant effects of heteroskedasticity with respect to the log of land area, 

and age.  For non-farm income, the variable of interest to [Self] (2007), the effect is nearly 

significant (p=0.145). 

 Table 2 presents the full and component elasticities for those three variables for which the 

effects of heteroskedasticity were significant, or nearly so.  The first column translates the probit 
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marginal effects into elasticities.  The second does the same for the OLS equation (which affects 

only the non-logged covariate, head’s age).  Note that the bootstrapped standard errors for the 

logged variables are comparable to the conventional results in the previous table.  Next come the 

estimates of kλ̂  for the logged variables (also the same as in the previous table) and of kk xλ̂  for 

head’s age.  All three are large in a practical sense: the heteroskedasticity correction knocks nine 

points off the elasticity of variable inputs with respect to non-farm income, reducing it to 0.179; 

for land area, the correction adds nearly seven points, raising the elasticity to 0.433; and for 

head’s age, the correction lowers the elasticity by 41 points, to -0.987.  Using the bootstrapped 

standard errors, these adjustments are statistically significant at the ten percent level for land area 

(p=0.080) and head’s age (p=0.078) and nearly so for non-farm income (p=0.104). 

 This method offers a means for determining when the retransformation problem makes a 

material difference to the elasticities generated by single-equation models in logs, as well as for 

the two-part model.  Subject to the concerns regarding the correct computation of standard 

errors, a large and significant result for kλ̂ , or for kk xλ̂  when covariates appear in levels, is a sign 

that conventionally-derived elasticities may be significantly biased.  The recommended 

correction is then easily implemented in most econometric software packages.  
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Table 1: Regression Results 

Outcome: Pr(Y>0) ln y ue ˆ   

Estimate of: dPr(Y>0)/dx β λ  

Covariates:     
Log Non-Farm Income 0.034 0.208  -0.086 ns 
 (0.017) (0.054) (0.059)  
     
Log of Area of Land Planted 0.031 0.317  0.065  
 (0.011) (0.035) (0.037)  
     
Household Breeds Livestock 0.201 0.902  -0.233 ns 
 (0.036) (0.109) (0.161)  
     
Number of Agricultural Implements 0.178 0.237  0.001 ns 
 (0.052) (0.047) (0.048)  
     
FTE's of Farm Labour 0.147 0.340  0.012 ns 
 (0.026) (0.066) (0.074)  
     
Head's Age -0.002 -0.006 -0.007  
 (0.001) (0.003) (0.004)  
     
Constant  2.340  1.788  
  (0.507) (0.654)  
     
Sample Size 1206  907 907  
Pseudo R-squared 0.21    
R-squared   0.39 0.37  

  

Note: Heteroskedasticity-robust and clustered standard errors in parentheses. 

ns: Not significant at 10% or better. 

 



Table 2: Elasticities for Selected Covariates 

Elasticities of:
With respect to: Pr(Y>0)  E(y|X, y>0)  E( ue ˆ |X,y>0)  

y
xk

Ε̂  

        
Log Non-Farm Income 0.056 + 0.208 + -0.086 = 0.179 
 (0.031)  (0.053)  (0.053)  (0.078) 
        
Log of Area of Land Planted 0.051 + 0.317 + 0.065 = 0.433 
 (0.019)  (0.034)  (0.037)  (0.048) 
        
Head's Age -0.216 + -0.361 + -0.410 = -0.987 
 (0.103)  (0.200)  (0.233)  (0.334) 
        
        

   Note: Bootstrapped standard errors  in parentheses, based on 500 repetitions. 
 
 



 
 

Notes 

 

1 This is the elasticity of the expected number of (say) households that will have 

positive expenditures, with respect to xk. 




