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PRELIMINARY AND INCOMPLETE 

 
 
 

 Adaptive Least Squares (ALS), i.e. recursive regression with asymptotically 
constant gain, as proposed by Ljung (1992), Sargent (1993, 1999), and Evans and 
Honkapohja (2001), is an increasingly widely-used method of estimating time-varying 
relationships and of proxying agents’ time-evolving expectations.  This paper provides 
theoretical foundations for ALS as a special case of the generalized Kalman solution of a 
Time Varying Parameter (TVP)  model.  This approach is in the spirit of that proposed by 
Ljung (1992) and Sargent (1999), but unlike theirs, nests the rigorous Kalman solution of 
the elementary Local Level Model, and employs a very simple, yet rigorous, 
initialization.  Unlike other approaches, the proposed method allows the asymptotic gain 
to be estimated by maximum likelihood (ML).   
 The ALS algorithm is illustrated with univariate time series models of U.S. 
unemployment and inflation.  Because the null hypothesis that the coefficients are in fact 
constant lies on the boundary of the permissible parameter space, the usual regularity 
conditions for the chi-square limiting distribution of likelihood-based test statistics are 
not met.  Consequently, critical values of the Likelihood Ratio test statistics will be 
established by Monte Carlo means and used to test the constancy of the parameters in the 
estimated models.   

 
 
 

See http://econ.ohio-state.edu/jhm/papers/KalmanAL.pdf for updates. 
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I.  Introduction 
 
 Adaptive Least Squares (ALS), i.e. recursive regression with asymptotically 
constant gain, as proposed by Ljung (1992), Sargent (1993, pp. 120-2; 1999, ch. 8-9) and 
Evans and Honkapohja (2001, Ch. 3.3), provides a method of estimating time-varying 
relationships that is more elegant than rolling regression, yet is far more parsimonious 
than an unrestricted Time Varying Paramters (TVP) model.  ALS and the more general 
concept of Adaptive Learning (AL) provide a means of proxying agents’ expectations 
that incorporates learning, in a way that is far more realistic than the severe informational 
requirements of fully Equilibrious, or “Rational,” Expectations.1  Bullard and Mitra 
(2002), Bullard and Duffy (2003), Evans and Honkapohja (2004), Orphanides and 
Williams (2003), and Preston (2004) are just a few of the many recent applications of the 
AL concept.  Giannitsarou (2004) provides an on-line bibliography of this burgeoning 
literature.   
 
 An early, but very restrictive, special case of ALS was Cagan’s (1956) “Adaptive 
Expectations” (AE) model, in which mt, the time t expectation of a future variable yt+1 (in 
Cagan’s case inflation), was assumed to obey an equation of the form  
  )( 11 −− −+= tttt mymm γ         (1)  
In Cagan’s original formulation, the gain coefficient γ was assumed to be an arbitrary 
subjective constant to be inferred indirectly from agents’ expectationally motivated 
behavior, e.g. their demand for money balances.   
 
 Shortly after Cagan’s original paper, however, Muth (1960) and Kalman (1960) 
independently demonstrated that (1) in fact gives the long-run behavior of the optimal 
signal extraction forecast of yt+1, if the process is generated by a Local Level Model 
(LLM), i.e. if yt is the sum of an unobserved Gaussian random walk plus independent 
Gaussian white noise, provided the long-run gain coefficient γ is computed as a certain 
function of the constant signal/noise ratio.   
 
 The gain coefficient is therefore not an arbitrary subjective learning parameter 
akin to a demand elasticity, but rather takes on a specific value determined by the 
behavior of the process in question. 
 
 Although Muth (1960) developed only the constant long-run gain coefficient, 
Kalman’s more rigorous treatment (1960; see also Harvey 1989, p. 107 and section II 
below) demonstrated that in finite samples the ideal gain is not constant, and in fact 
declines rapidly at the beginning of the sample.  Kalman’s rigorous analysis also allows 
the signal/noise ratio and therefore the gain coefficients and their limiting value to be 
estimated by Maximum Likelihood (ML).   
 

                                                 
1 “Adaptive Learning” is often construed to incorporate approaches such as Neural Networks and Genetic 
Algorithms, in addition to ALS and more general Random Coefficient Models.   
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 The Kalman Filter solution of the elementary LLM has since been generalized to 
allow a Time Varying Parameter (TVP) model in which all k coefficients of a linear 
regression relation are allowed to change randomly over time, as exposited, for example, 
by Harvey (1989, Ch. 3).  Sargent (1999, Ch. 8), following Ljung (1992), has proposed a 
restriction on the covariance matrix of the random coefficient changes that leads, by this 
Extended Kalman Filter (EKF), to ALS with a constant gain.  However, because 
Sargent’s gain is constant throughout, his model does not nest the rigorous declining-gain 
solution of the LLM when it is restricted to a simple time-varying intercept term with no 
time-varying slope coefficients.  His model in fact incorporates an LLM with a non-
constant signal/noise ratio.   
 
 Sargent (1999, Ch. 8) goes on to recommend initializing his constant gain ALS 
recursion with the unconditional expected values of the coefficient vector and covariance 
matrix.  However, by his maintained assumption, the coefficients are nonstationary, and 
therefore have no unconditional mean, and infinite unconditional variances.  In the 
absence of any truly prior information, the coefficients are in fact underidentified until t = 
k, at which time they have a precise initialization, developed below. 2 
 
 In Sargent’s empirical Chapter 9, he provides estimates of two quarterly 
macroeconomic models with Adaptive Least Squares.  However, rather than estimate his 
constant gain from his data, he arbitrarily sets it to 0.015, which corresponds to a long-
run effective sample size (see below) of 66.67 quarters, or 16.67 years.   
 
 The present study introduces an alternative specification of the covariance matrix 
in question, (24) below, that does nest the rigorous declining-gain LLM.  The 
corresponding ALS recursion may be validly initialized with (31) below.  Equation (32) 
below then determines the log-likelihood for the corresponding AL recursion, and 
permits the signal/noise ratio to be actually estimated by ML rather than simply 
hypothesized as by Sargent (1999, Ch. 9), or by ad hoc means as in Stock and Watson 
(1996) and Orphanides and Williams (2004).3  This algorithm has been implemented in 
GAUSS as program ALS, and is available on the PI’s homepage (McCulloch 2005).   
 
 Section II below reviews and restates the rigorous Kalman solution of the LLM, 
in terms of the key concept of Effective Sample Size.  This motivates section III, which 
develops a parsimonious TVP model that nests the LLM yet at the same time leads in the 
long run to constant-gain ALS, and discusses related models that have been employed by 
others.  Section IV outlines planned technical extensions of the model.  Section V applies 

                                                 
2 Although the full sample OLS coefficients can easily be computed, they are in no sense “prior” 
information or “unconditional” values.  Ljung (1992, p. 100) unhelpfully instructs his reader to initialize 
the covariance matrix with an unspecified P0.  Durbin and Koopman (2001, ch. 5) provide an “exact 
initialization” for the general KF, which may be equivalent to that provided below, although this is not 
obvious to me at present.    
3 Orphanides and Williams (2004) calibrate their gain coefficient by matching simulated forecasts of 
inflation, unemployment, and the fed funds rate as closely as possible to the mean forecasts of the Survey 
of Professional Forecasters.  The procedure advocated here is instead to match the likelihood of the realized 
values as closely as possible.  This is what the Professional Forecasters themselves should be doing to 
calibrate their own forecasting equations.   
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the ALS algorithm to US unemployment data, while Section VI develops an ALS model 
of US inflation.  Section VII discusses potential future applications.  
 
II.  The Local Level Model 
 
 Before examining Adaptive Least Squares, we first review and restate the Kalman 
solution of the elementary Local Level Model in terms of the concepts Effective Sample 
Size, Cumulative Sample Mass, and Cumulative Evidence.     
 
 In the Local Level Model (LLM), an observed process yt is the sum of an 
unobserved Gaussian random walk µt plus independent Gaussian white noise:  
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The signal/noise ratio is defined to be  
  22 / εη σσρ = ,  
so that σε

2 and ρ completely describe the system.   
 
 Equation (2) implies 
  111 εµ −= y , 
so that the distribution of µ1 given y1 may be written  
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 Assume now, as we know to be the case for t = 2, that the distribution of the state 
variable µt-1 given the observations yt-1 = (y1, ... yt-1)′ up to and including yt-1, is likewise 
normal, with parameters   
  ),,(~| 2

1111 −−−− tttt mN σµ y  
It follows that  
  ).,(),(~| 22

11
22

111 εη ρσσσσµ +=+ −−−−− tttttt mNmNy       (3) 
We also know that 
  ),(~| 2

εσµµ ttt Ny .  
Using Bayes’ Rule as in Eqn. (3.7.24a) of Harvey (1989, p. 163), and completing the 
square with the appropriate constant term, we then have  
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 In other words,  
  ),(~| 2

tttt mN σµ y  
with 
  ),()1( 111 −−− −+=−+= ttttttttt mymmym γγγ        (6)  
where  
  22 / εσσγ tt = . 
 
 In the special case ρ = 0, so that µt = µ, a constant, we have  
  ttt /1/ 22 == εσσγ . 
When ρ > 0, the gain is somewhat larger than the reciprocal of the true sample size, as is 
the ratio 22 / εσσ t .  In other words, the Effective Sample Size, Tt, which we define by  
  tttT γσσε /1/ 22 == , 
is less than the true sample size t.  In terms of this Tt, (3) becomes  
  ( )2

1111 )1(,~| −−−− + ttttt TmN σρµ y ,        (7) 
 
and (5) becomes  
  ( ) 11 1

1
1 ++= −

−
− ttt TTT ρ ,         (8) 

with  
  00 =T .  
 
 Note that so long as ρ > 0, Tt > Tt-1, yet Tt < Tt-1 + 1, so that the effective sample 
size grows with t, but more slowly than the true sample size.  Furthermore,  
  TTtt

=
∞↑

lim ,  

where  
  ρ/14/12/1 ++=T           (9) 
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is the unique positive root of the quadratic equation  
  012 =−− TT ρρ  
that defines the fixed points of (8).  The constant gain AE formula (1) is therefore strictly 
valid only in this limit, with the limiting gain T/1=γ .4   
 
 Equation (7) implies  
  ( )( )22

1111 1,~| εσσρ ++ −−−− ttttt TmNy y , 
which can be used to compute the log joint probability of y2, ... yn conditional on y1 as a 
function of 2

εσ and ρ, and therefore the log likelihood of 2
εσ and ρ given y1 as a function 

of y2, ... yn.  The observation variance 2
εσ  may be concentrated out of the log likelihood 

function, so that a numerical maximization search is only required over the single 
parameter ρ.  
 
 Given the effective sample sizes Tt as determined by (8), the LLM Kalman Filter 
may equivalently be computed in terms of what we may call the cumulative evidence zt 
and the cumulative sample mass wt as  
  ,/ ttt wzm =  
by means of the recursions  
   ( ) ,1 1

1
1 tttt yzTz ++= −

−
−ρ          (10) 
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− ttt wTw ρ          (11) 
together with the initial conditions  
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 Equations (8), (10) and (11) show that the passage of one period of time 
diminishes the effective sample size, the evidence, and the sample mass accumulated to 
date by the common factor  
  ( ) ( ) 1/11 1

1
1 <−=+ −

−
− ttt TTTρ          (11) 

before the new time unit, evidence and sample mass (1, yt, and 1, respectively) are added 
onto them.   Since the LLM just has a (time-varying) level and no regressors, the 
cumulative sample mass wt and the effective sample size Tt are here one and the same 
thing.   
 
III.  Adaptive Least Squares 
 
 Consider now the standard fixed coefficient regression equation,  
  ),0(~, 2

εσεε NIDy tttt += βx ,            (12) 

                                                 
4 As noted above, Muth (1960) developed the limiting gain γ, but not the exact finite sample gain γt 
required for ML estimation of ρ.   
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where xt is a 1×k row vector5 of ideally exogenous explanatory variables, and β is a k×1 
column vector of coefficients.  Let yt be the t×1 vector of dependent variables observed 
up to and including time t, and Xt be the t×k matrix of explanatory variables up to and  
including time t.  Ordinarily the first column of Xt is a vector of units, so that β1 is the 
intercept.   
 
 It is well known (e.g. (10) of Sargent 1993 or (2.9) of Evans and Honkapohja 
2001) that the OLS estimator ( ) ttttt yXXXb ′′= −1  of β given the data up to and including 
time t can be expressed in terms of the Recursive Least Squares (RLS) formula6  
  ( )1

1
1 −

−
− −+= tttttttt y bxxRbb γ ,        (13) 

where γt = 1/t and ( ) ttt t XXR ′= /1 , the sample average value of the regressor outer 
product ttxx′ , may be updated by  
  )( 11 −− −′+= tttttt RxxRR γ .           (14) 
The variance of bt is then given by  
  12 −= ttt RP εσγ .           (15) 
 
 The ALS literature commonly replaces γt = 1/t in (13) – (15) by a constant γ as in 
Cagan’s original Adaptive Expectations formulation (1).  However, this constant-gain 
ALS does not nest the rigorous declining-gain Kalman solution of the LLM that justifies 
(1) as an asymptotic approximation, and that permits ML estimation of the parameter 
determining the long run gain itself.   
 
 The simplistic LLM that leads asymptotically to (1) allows the dependent variable 
yt to depend only on a simple (time-varying) mean.  A much more general framework is 
the Random-Coefficients linear regression Model, 
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       (16) 

where ηt is a k×1 column vector of transition errors independent of the observation errors 
εt, and Qt is a k×k covariance matrix.  
 

System (16) may be solved recursively by means of the well-known Extended 
Kalman Filter.  Assume that we have found a rule according to which, for t > k,   
  ),(~| 1111 −−−− tttt N Pbyβ          (17) 
for some k×k covariance matrix Pt-1 that may depend on Xt-1, but not yt-1 or εt-1.  Then by 
Harvey (1989, pp. 105-6), or equivalently, Ljung and Söderström (1983, p. 420), 
  ),,(~| tttt N Pbyβ  
where  
  ( ) ( )11

1
1 −−

−
− −′++= ttttttttt yf bxxQPbb ,       (18) 

                                                 
5 We make xt a row vector rather than a column vector, since xt is simply the t-th row of the regressor 
matrix Xn.   
6 RLS follows immediately from the matrix identity A-1 - B-1 = B-1(B - A)A-1.   
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1 εσ+′+′= − tttttf xQPx .7           (20) 
 
 The textbook Kalman Filter equations (18) and (19) above may be rearranged to 
eliminate ft and to look more like RLS, as follows:  Post-multiply (19) by tx′  to obtain  
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so that (18) becomes  
  ( ) ( )1

2
1 /1 −− −′+= ttttttt y bxxPbb εσ ,        (21)  

and (19) becomes  
  ( ) ( ) ( )tttttttt QPxxPQPP +′−+= −− 1

2
1 /1 εσ .    

Then multiply the last equation on the left by 1−
tP  and on the right by ( ) 1

1
−

− + tt QP  and 
rearrange to obtain  
  ( ) ( ) ttttt xxQPP ′++= −

−
− 21

1
1 /1 εσ .        (22) 

 
 The full-blown random coefficients model (16) is much too general for our 
purposes, however, since if even if Qt is made time-invariant, it still introduces k(k-1)/2 
incidental time-variation hyperparameters in addition to the observation variance σε

2.     
 

Cooley and Prescott (1973) were able to reduce Qt to a single parameter, but only 
by allowing only the intercept to change, so that Qt has only a single non-zero element.  
Their model nests the LLM, but not ALS.   

 
More generally, Sims (1988) and Kim and Nelson (2004) use (16) with a time-

invariant covariance matrix Q, but assume that Q is diagonal in order to keep the problem 
tractable.  This assumption still introduces k hyperparameters, yet is not particularly 
natural, since if a slope coefficient of a regression were to change, we would ordinarily 
expect to see compensating changes in the intercept and the slopes of correlated 
regressors, ceteris paribus.  Furthermore, a change of basis for the regressors should leave 
the story told by a regression unchanged, yet this will not be the case under this 
assumption, since the implications of a zero correlation between the regressors will 
depend upon the arbitrary choice of basis.  Like the Cooley-Prescott model, this 
diagonality assumption does nest the LLM, but not ALS.   
 
 McGough (2003) uses a diagonal covariance matrix that is a (time-varying) 
constant times the identity matrix.  Although this model is adequate for the theoretical 
point he was making, it is empirically unsatisfactory, even aside from the above 
considerations, since it forces all the coefficients to have the same transition variance (at 
                                                 
7 There is an error in Sargent’s (1999) equation (94), which does not match Harvey’s (3.2.3) unless Pt-1 in 
(94b) and in the term after the minus sign in (94c) is replaced with Pt-1 + R1t in Sargent’s and Ljung’s 
notation, i.e. Pt-1 + Qt in ours (and Harvey’s).  The same error appears in Sargent’s source, Ljung (1992), 
equations (36)-(39).  However, Ljung’s own source, Ljung and Söderström (1983), is correct.  See 
Appendix below for details.   
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each point in time), even though their units depend upon the often arbitrary units in which 
the regressors happen to be measured. 
 
 In order to obtain a rigorous foundation for long-run fixed-gain ALS, however, it 
is sufficient and natural simply to postulate, following Ljung (1992) and Sargent (1999, 
p. 117), that Qt is directly proportional to Pt-1.  It is apparent from (22) why one would 
want Qt to be proportional to Pt-1 and not Pt, say.  Nevertheless, the proportionality that 
Ljung and Sargent propose must be modified in order to reduce to the elementary LLM 
when k = 1.   
 

Let ρ be an index of the uncertainty of the transition errors relative to the 
observation errors, such that Tt as computed from ρ as in (8) measures the Effective 
Sample Size.  Recall that in the LLM, the variance of the “noise”, i.e. the observation 
errors, is related to that of the estimation errors at time t - 1 by  
   2

11
2

−−≡ ttT σσε , 
so that the variance of the “signal”, i.e. the transition error ηt, is given by  
  2

11
2

−−≡ ttT σρση .          (23)  
In the same spirit, we assume that Tt-1Pt-1 measures the measurement error per effective 
observation as of time t - 1, just as does in the LLM, and thus that the transition 
covariance matrix Qt of ηt in (16) is given by  
  11 −−= ttt T PQ ρ .            (24) 
When the random coefficients model (16) contains only an intercept term and no 
regressors, (24) becomes (23).  Hence, the proposed covariance specification exactly 
nests the LLM.   
 
 Defining ( ) 12 / −= ttt T PR εσ , under (24) the restated Kalman Filter equations (21) 
and (22) immediately become the variable-gain RLS equations (13) and (14), with gain  
  tt T/1=γ , 
exactly as in the LLM.  As t becomes large, the gain takes on the fixed value γ = 1/T, 
where T is as in (9).   
 
 However, the required recursion is in fact much simpler, and the entire derivation 
of the filter quite transparent, if we dispense with Rt altogether and consider instead the 
cumulative sample mass matrix 11

1
1

2
1 −−

−
−− == tttt T RPW εσ  and the cumulative evidence 

vector 111 −−− = ttt bWz , as follows:  Equations (17) and (24) imply, analogously to (7),    
( )11111 )1(,~,| −−−−− + tttttt TN PbyXβ ρ  

Furthermore,  
  ),(~,| 2

εσttttt Ny βxxβ . 
Noting that ,)'('))(''()( 2

tttttttttt βxxββxxββx ==  we have, as in (4),  
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where  
  ttt zWb 1−= ,           (25) 
  ttttt yT ')1( 1

1
1 xzz ++= −

−
−ρ ,           (26) 

and 
  ttttt T xxWW ')1( 1

1
1 ++= −

−
−ρ .        (27) 

The variance of bt is then  
12 −= tt WP εσ .           (28) 

 
 Equations (26) and (27) are essentially the “information” filter mentioned by 
Harvey (1989, p. 108), cp. also Bullard (1992), since our Wt is just a scaled version of the 
information matrix Pt

-1.  They are equivalent to (13) and (14), but make clear how, as in 
the LLM, the accumulated evidence zt and sample mass Wt diminish in the same 
proportion as Tt before accruing the new evidence and sample mass.  When ρ = 0, zt 
becomes ttyX′ , Wt becomes ttXX′ , and (25) becomes the familiar OLS formula.   
 
 We now consider initialization of the above recursion.  For t < k, the distribution 
βt|yt is defective, since the t×k matrix Xt has rank t < k.  Nevertheless, Xtβt has a proper t-
dimensional distribution that characterizes what we can say about βt.  For t = 1,  
  ),,(~ 111111 ΣyβX Ny ε−=  
where ( )2

1 εσ=Σ  is a 1×1 matrix.  Now suppose that we have found that  
  ),(~ 1111 −−−− tttt N ΣyβX  
for some (t-1)×(t-1) matrix Σt-1.  We have  
  tttttt ηXβXβX 1111 −−−− +=   
If, in the spirit of (24), we also assume  
  ( ) ( ) 111111 −−−−−− == ttttttt TT ΣβXCovηXCov ρρ , 
we have 
  ( )1111 )1(,~ −−−− + ttttt TN ΣyβX ρ . 
We also know that 
  tttt y ε−=βx , 
so that  
  ),,(~ tttt N ΣyβX  
where  
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After using (29) recursively to find Σk, we therefore may, indeed must in the absence of 
true prior information, initialize our recursion at t = k with  
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and use (25) and (28) for all t ≥ k, since then for t ≤ k,  
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and (28) holds for t = k. 
   
 Having thus initialized and updated the filter, the log likelihood of the two 
hyperparameters σε

2 and ρ may be found by adding together the log densities for yk+1|yk,  
... yn|yn-1, where  
  ( )22

11 ,~| ttttt sNy εσ−− bxy ,         (32) 
1)1( 1

1
2 +′+= −

− ttttt Ts xWxρ  
As in the LLM, the observation variance 2

εσ  may be concentrated out of the log 
likelihood function, so that a numerical maximization search is required only over the 
single parameter ρ. 
 
                                                 
8 The recursion (29) could, if desired, be continued beyond t = k, and then used to find bt by Generalized 
Least Squares (GLS).  This would give the same numerical answer as the Kalman Filter, but without its 
computational efficiency.   
  Note that although Σt is diagonal for t ≤ k+1, it is not diagonal for t > k+1.  Thus although ALS is 
numerically equivalent to the solution of a Weighted Least Squares (WLS) problem, the problem it solves 
is not a WLS problem.  The same is true of the LLM, which in this respect is a special case of ALS. 
  For (16) with general Qt, the same argument leads to (29) with the upper left element of the RHS replaced 
by Σt-1 + Xt-1QtXt-1'.  (30) may then be used at t = k to initialize the efficient Kalman filter.  As noted above, 
it is possible that this would be equivalent to the “exact initialization” developed by Durban and Koopman 
(2001, ch. 5), though this is not obvious to the author at present. 
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 If the model is well-specified, the variance-equalized forecast errors  
  ( ) ttttt syu /1−−= bx           (33) 
should be iid N(0, σ2).  Routine specification tests such as Q statistics, the Jarque-Bera 
test, etc., may be applied to these.  (See Durbin and Koopman, Ch. 5).   
 
 The Kalman Filter for the ALS model provides the best estimate of the coefficient 
vector given the past history of the data.  This is the appropriate question to ask if one is 
interested in simulating expectations as of each point in time.  However, if one instead 
wanted to measure the ex post value of the regression coefficients given both prior and 
subsequent experience, the Kalman Smoother becomes the appropriate tool.  This is 
straightforward, but requires some care because of the asymmetrical (backward- rather 
than forward-looking) nature of our assumption about the transition matarix covariance 
matrix.  The smoother and its covariance matrix have already been developed and 
incorporated into program ALS (McCulloch 2005), and an illustration of its use is given 
below.  Details will be forthcoming.   
 
 Ljung (1992) and Sargent (1999, Ch. 8) in fact assume, in place of (24), that 

  11 −−
= tt PQ

γ
γ ,           (33) 

with the result that (13) holds with a constant γ in place of γt = 1/Tt.9  Under this Ljung-
Sargent assumption, the initial observations are given too little weight.  This 
underweighting makes little difference for the final estimates of the regression 
coefficients or the long-run behavior of the system if ρ is known, but will distort the early 
estimates and will cause the ML estimate of ρ and therefore the computed asymptotic 
gain to be biased in a finite sample.  Note that the Ljung-Sargent specification, unlike the 
present model, does not nest the LLM, since it in fact implies a time-varying signal/noise 
ratio.   
 
 Stock and Watson (1996) and Sargent and Williams (2003) assume, in place of 
either (24) or (33), that  
  ( ) 12 −′== ttt E xxQQ ερσ .         (34) 
If the relevant expectation exists, this is equivalent in an expectational sense to (24), since 
then  
  tttt ETE xxW ′= .   
However, it is not necessarily true that the required moments do exist, and even if they 
did, it would impose a great informational burden on agents to require them to know what 
they are.  Our equation (24), on the other hand, does not require these moments to be 
finite, and only requires agents to know Xt, yt, and ρ.10  Assumption (34) does nest the 
LLM, since then the required expectation is just a unit scalar.  For k > 1, however, it only 
approximates ALS with gain 1/Tt.       
 

                                                 
9 This insight is valid despite the error in Ljung (1992) and Sargent (1999) noted in the Appendix.  The 
approximation invoked by Ljung (1992, p. 100) is in fact unnecessary.   
10 The observation variance σε

2 is required to compute Pt, but not bt.   
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 Stock and Watson (1996) calibrate the gain coefficient ρ in (34) (their λ2) by 
minimizing the sum of squared forecasting errors.  This will give similar to ours, but by 
no means equivalent, even apart from the difference between our (24) and their (34).  For 
one thing, the initial errors have much larger variance than the later errors simply because 
the coefficient vector is still highly uncertain.  Equation (32) correctly takes this into 
account and enables the full permissible sample (n-k observations) to be incorporated into 
the log likelihood.  Stock and Watson, on the other hand, only grossly take this factor into 
account, by discarding the first 60 (monthly) observations a priori.  This is wasteful if the 
signal/noise ratio is large, and inadequate if the signal/noise ratio is small.  Furthermore, 
it is obvious from (32), which is similar to the formula for the conditional distribution 
that would result from (34), that even asymptotically the errors are not homoskedastic, 
and hence should not be given equal weight.  
 
 Orphanides and Williams (2004) calibrate their gain coefficient both by 
minimizing a sum of squared errors as in Stock and Watson (1996), and by matching 
simulated forecasts of inflation, unemployment, and the fed funds rate as closely as 
possible to the mean forecasts of the Survey of Professional Forecasters.  However, if 
one’s objective is to construct one’s own expert forecast of these variables, one should 
use actual experience, not the forecasts of other, perhaps less sophisticated, “experts,” to 
calibrate one’s own procedures.   
 
 Cogley and Sargent (2004) ambitiously estimate an autoregressive TVP model in 
which the coefficients take a random walk with unrestricted covariance matrix, subject to 
reflecting boundaries that prevent nonstationary autoregressive roots.  Their procedure is 
far more computation-intensive than ALS, however. 
 
IV.  Technical extensions 
 
 Because the null hypothesis of no parameter change, i.e. ρ = 0, is on the boundary 
of the permissible parameter space ρ ≥ 0, the usual regularity conditions for the chi-
square limiting distribution of the Lagrange Multiplier (LM) and Likelihood Ratio (LR) 
statistics are not met (Moran 1971a, 1971b).  Nevertheless, Tanaka (1983) has shown that 
the LM statistic is still useful and informative in the LLM case, provided the critical 
values are appropriately adjusted.   
 
 The author plans in the near future to determine Monte Carlo critical values for 
the LR statistic under the null of no change.  These Monte Carlo critical values will be 
adjusted for multiple-test Monte Carlo sampling error using the methodology introduced 
by McCulloch (1997, p. 79).  However, in that paper all critical values were corrected for 
100 independent tests of the null hypothesis in question.  A more appropriate correction 
would be to correct the p-critical value for 1/p independent tests of the null hypothesis.  
This modification is easily implemented.   
 
 It is conjectured that these critical values will not depend asymptotically on either 
the sample size or the number of regressors (k) in the model, let alone on the numerical 
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values taken by the regressors.11  Preliminary simulations with the LLM indicate that the 
5% critical value is approximately 2.3, which is far less than the value of 3.84 from the 
chi-squared distribution with one degree of freedom.   
 
 The Kalman Filter for the ALS model provides the best estimate of the coefficient 
vector given the past history of the data.  This is the appropriate question to ask if one is 
interested in simulating expectations as of each point in time.  However, if one instead 
wanted to measure the ex post value of the regression coefficients given both prior and 
subsequent experience, the Kalman Smoother becomes the appropriate tool.  This is 
straightforward, but requires some care because of the asymmetrical (backward- rather 
than forward-looking) nature of the assumption (24).  The smoother has already been 
implemented in program ALS (McCulloch 2005), but has not yet been written up here. 
 
 Omitting a regressor from the model will reduce calculated likelihood.  However, 
it is not clear at this point to the author just what justification there would be for using the 
resulting likelihood ratio statistic to test the hypothesis that the coefficient on this 
regressor is uniformly zero, since this time-varying coefficient is not a hyperparameter of 
the model.   
 
 If one is estimating an autoregression by ALS, it is important to remember that, as 
in OLS, the inverse AR roots are biased downwards, particularly as they approach unity.  
In the usual fixed-coefficients OLS environment, this bias disappears in large sample, but 
this consistency is absent in the ALS case, because the effective sample size never rises 
above T.  It therefore may be important to mean- or median-unbias the AR coefficients 
according to the effective sample size before using them to simulate forecasts.  Such a 
correction is proposed by Fuller and Roy (2001) and has been implemented, using US 
inflation data with expanding window regression, by McCulloch and Stec (2000).  See 
also Harvey (1989, ch. 7) concerning endogenous regressors.   
 
 If the coefficients change over time, it is possible that the observation variance 
(and therefore also, holding the signal/noise ratio constant, the transition variance) 
likewise changes over time.  This can incorporated into the present ALS model as a 
GARCH effect.  Such GARCH effects were first introduced into an econometric model 
by McCulloch (1985), were applied to a non-Gaussian signal extraction problem by 
Bidarkota and McCulloch (1998), and have been incorporated into a random-coefficients 
model by Kim and Nelson (2004).  However, the incorporation of such effects into ALS 
have not yet been implemented.   
 
V.  Application to US Unemployment Rate.   
 
 Orphanides and Williams (2004) find, using constant-gain ALS, that perceptions 
of the “natural unemployment rate” have not remained constant over the last 5 decades, 

                                                 
11 Note that in order to be directly comparable to the likelihood under the alternative, the likelihood under 

the null should be computed as ∑
+=

−

n

kt
ttyp

1
1)|( y , rather than as ∑

=

n

t
ntyp

1
)|( y  as in OLS.  
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but rather have drifted up and back down again.  If so, perhaps the autoregressive 
coefficients of its dynamics have also undergone changes.  Rigorous declining-gain ALS  
allows this relationship to be estimated as far back as there are reliable data, and to test 
for constancy of the parameters as discussed above.   
 
 Figure 1 below shows the US Civilian unemployment rate for 1948Q1 – 2004Q3, 
as seasonally adjusted by the BLS.  The raw monthly data has been converted to a 
quarterly basis, using the first month of each quarter as a proxy for the entire quarter.  
Note that there is an uptrend in unemployment to about 1983, followed by a downtrend.  
Furthermore, the swings in unemployment are more peristent in the later period than in 
the earlier period, as evidenced by the fact that the first four major peaks in 
unemployment span 12 years, while the last four major peaks span 28 years.  It may be 
hoped that ALS will pick up these effects.  
 

Figure 1. 
Civilian Unemployment Rate, SA, 48Q1 – 04Q3 

(1st mo. of quarter) 

 
 
 The following AR(2) model was fit by ALS to the data for 1948Q3 – 2004Q3: 

Ut = β1t+ β2t Ut-1 + β3t Ut-2 + εt 
The ALS ML estimates of the signal/noise parameter and its implied long-run gain and 
effective sample size are: 

ρ = 0.000397 (s.e. = 0.00352) 
γ = 0.01974 
T = 1/γ = 50.66 qtr. = 12.67 yr. 

 
Because 3 regression coefficients are being estimated, the first predictive density 

that can be computed is for the 4th observation, counting 1948Q3 as the first after 
reserving two lags.  The log likelihood is therefore  

log L(ρ, σ2) = p(y4, ... yn|y-1, ... y3) = -110.32. 
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When ρ is constrained to be 0, the joint density for the same observations with the same 
conditioning declines, and the likelihood ratio statistic LR, i.e. twice the change log 
likelihood, is  

LR (ρ = 0) = 4.31.   
As noted above, this statistic does not have its customary chi-squared distribution with 1 
degree of freedom because the null lies on the boundary of the permissible parameter 
space.  Nevertheless, preliminary Monte Carlo simulations (using only 100 replications) 
indicate that the 5% critical value is approximately 2.3.  We may therefore tentatively 
reject constancy at the 5% level, despite the large standard error of ρ, as estimated from 
the Hessian of the likelihood function at the point estimate.   
 
 Figure 2 shows the time-varying filter coefficient estimates, together with ±1 s.e. 
bands, with the intercept in blue (in black and white the central, darkest group), the 
AR(1) term in red (the upper group), and the AR(2) term in green (the lower, lightest  
group).   
 

Figure 2 
Filter Coefficient Estimates 

b1,t (blue), b2,t (red), b3,t (green), ± 1 s.e. 

 
 
 The AR(2) coefficient is always at least 2 standard errors below 0.  When the 
second lag of unemployment is excluded from the ALS regression altogether, the 
equivalently conditioned joint density of the same observations declines to  

log L = p(y4, ... yn|y-1, ... y3; β3,t = 0) = -139.87 
and the corresponding LR statistic is  

LR (β3,t = 0) =  59.10  
This value is dramatically in excess of the customary 5% chi-squared critical value of 
3.84, but as noted above, it is not clear why this is meaningful, since this does not 
correspond to a restriction on either of the hyperparameters of the model.  We may 
tentatively conclude, however, that the process is at least AR(2) at this quarterly 
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frequency, with a negative coefficient.  The state of the labor market at any point in time 
therefore depends both on the level of unemployment and the direction of change of this 
level from the quarter before.  In particular, the negative AR(2) coefficient implies that 
the direction of change of the unemployment rate has pronounced positive inertia.   

 
 Figure 3 shows the standard errors by themselves for the filter coefficient 
estimates of Figure 2.  At the beginning of the sample, these are offscale because of the 
very small effective sample size that has accumulated.  However, by T = 12.67 years, if 
not before, they stabilize with only minor subsequent fluctuations, caused by the evolving 
weighted moment matrix.  Because the moments of the first and second lags are almost 
identical, their coefficients have virtually the same standard errors.   
 

Figure 3 
ALS Filter Standard Errors 

b1,t (blue), b2,t (red), b3,t (green). 

 
 
 Figure 4 below shows the intercept term again from Figure 2, this time in red, 
along with the sum of the two AR coefficients, in blue, together with their 1 s.e. bands as 
computed from the coefficient covariance matrix.  There is a pronounced secular decline 
in the intercept, but at the same time a pronounced increase in the sum of the lag 
coefficients, and therefore in the persistence of unemployment.   
 

Figure 4 
b1,t (red), b2,t + b3,t (blue), ± 1 s.e. 
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Figure 5 belows show filter estimates of the equilibrium or natural unemployment 
rate, computed as  

UN
t = β1t / (1- (β2t + β3t)),  

together with its 1 s.e. bands as approximated by the delta method, along with the 
unemployment rate itself.  A multivariate model of the natural rate might also take 
inflation surprises into account, but would probably not yield substantially different 
estimates of the natural rate.   
 

Figure 5 
U (blue), ALS Filter Estimates of UN (red), 

± 1 s.e. by delta method 

 
 

Although the sum of the lag coefficients is biased downwards, as noted above, 
this bias is offset by a compensating bias in the intercept, so that it is not obvious that the 
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point estimate of the natural rate itself is biased at all.  Nevertheless, the validity of the 
delta method depends on the standard errors of the numerator and denominator of the 
required coefficients being small in comparison to their respective point estimates, which 
is not at all the case here.  The estimated standard errors should therefore be used with 
extreme caution.  The tendency of the standard errors to grow with time is related to the 
fact that the numerator and denominator of the expression evaluated both become closer 
to zero as time proceeds.    
 

It may be seen that the secular decline in the intercept from 1950 to 1980 was 
more than offset by the secular rise in the persistence of unemployment, as measured by 
the sum of the lag coefficients, with the net result that the estimated natural rate rose 
during this period.  After 1980 this trend was reversed, although the subsequent decline in 
the natural rate has been small in comparison with the approximate standard errors.  The 
actual unemployment rate was not significantly above the filter-estimated natural rate 
even in the early 1980s, and since 1980, the actual rate has always been within 1 standard 
error of the point estimate of the natural rate.  The terminal estimate of the natural rate, 
for 2004Q3, is 5.66%, but with a standard error of 1.16%.   

 
The filter estimates of the Natural Rate in Figure 5 simulate real-time estimates 

that could have been made by policy makers or agents at the time in question.   
 
Figure 6 shows the variance-equalized ALS forecast errors, as computed from 

(33).  Clearly some volatility clustering is present, so that more efficient point estimates 
and more accurate standard errors could be obtained by GARCH-ALS.  This is still under 
development, however.  It appears that some kurtosis will be present even after the 
volatility clustering is removed.   

 
Figure 6 

Variance-equalized ALS forecast errors 
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 Figure 7 below shows the ALS smoother coefficient estimates, computed using 
the subsequent data as well as the preceding data.  Except near the ends of the data set, 
the smoother standard errors should be about 71% as large as the filter standard errors, 
since they are based on almost twice as much data.   
 

Figure 7 
ALS Smoother Coefficient Estimates 

bS
1,t (blue), bS

2,t (red), bS
3,t (green), ± 1 s.e. 

 
 
 Figure 8 shows the smoother estimates of the natural unemployment rate, along 
with the unemployment rate itself.  While these estimates are more precise than the filter 
estimates, they could not have been known to policy makers in real time.  Note that actual 
unemployment is significantly greater than the smoother estimate of the natural rate, if 
not the filter estimate, in the early 80s, and is occasionally more than 1 standard error 
from the natural rate in the early 90s and around 2000.   
 

Figure 8 
U, ALS Smoother Estimates of UN, ± 1 s.e. 
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 Figure 9 shows the smoother (green) and filter (red) point estimates of the natural 
rate, along with the raw unemployment rate (blue).  It may be seen that the Fed could 
reasonably have underestimated the natural rate before 1992, and overestimated it 
afterwards, as suggested by Orphanides and Williams (2004).  However, the difference 
between these two estimates is small in comparison with their standard errors.  Note that 
the smoother and filter necessarily coincide at the end of the sample. 
 

Figure 9 
U (blue) with ALS filter (red), smoother (green) 

estimates of UN 

 
  
 
VI.  Application to US CPI Inflation 
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 As Klein (1978) pointed out early on, the time series behavior of US inflation has 
not been constant over time.  In the 19th century, the price level itself appeared to be 
stationary.  In the early 20th century, the price level underwent permanent shifts, but the 
inflation rate appeared to be stationary with mean near 0.  But then in the later 20th 
century, the inflation rate became more and more persistent.  Writing in 1971, Sargent 
(1971) was still able to argue that inflation was clearly a stationary process, but by 1974, 
a unit root in CPI inflation could no longer be rejected using an expanding window 
regression with fixed coefficients, as demonstrated by McCulloch and Stec (2000).  A 
univariate time series model of the US inflation is therefore a natural application of the 
method.  Monthly CPI inflation has strong seasonality that itself varies from decade to 
decade.  This is easily accommodated with ALS, since it automatically permits such 
variation.   
 
 Figure 10 shows the U.S. CPI-U (n.s.a.) from 1913.1 to 2004.8.  In order to 
reduce rounding error, the 1967 base year was employed.  For 1967.1 to 1983.8, the BLS 
published a CPI-X, which retroactively computed the housing component using the rental 
equivalent basis adopted in 1983.  This was spliced into the CPI-U to obtain what may be 
called the CPI-UX (blue).   
 

Figure 10 
CPI-U (red), CPI-UX (blue) 

 
 

 Figure 11 shows the annualized percentage logarithmic inflation rate computed 
from the data of Figure 10, for 1913.2-2004.8.   
 

Figure 11 
CPI-UX inflation (annualized, percent) 
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 A restricted AR(24) model was fit by ALS to this data.  In order to reduce the 
number of free AR parameters to 5, the AR coefficients were constrained by a linear 
spline, with knot points at 2, 4, 7, 13, and 25 months, with a zero restriction at the last 
knot.  Since monthly CPI inflation has strong seasonals, 12 seasonal dummy variables 
were included in place of a single intercept, for a total of k = 17 parameters with n = 1100 
observations.  Despite the huge number of computations required, ML estimation of the 
model, complete with smoother estimates, takes only about 75 seconds on a PC.  The 
ALS ML estimates were  

ρ = 0.000025 (s.e. = .000009) 
γ = 0.00499;  T = 1/γ = 200.27 mo. = 16.69 yr. 
LR (ρ = 0) = 29.262 

Once again, constancy will likely be easily rejected, even after the extreme GARCH 
effects (not shown for reason of space) are taken into account. 
 
 Figure 12 shows the estimated seasonal contribution to inflation, computed as the 
time-varying coefficient on the respective seasonal dummy variable, minus their average, 
so that at any point in time these seasonals identically average to 0.  The vertical scale is 
annualized percent inflation.  It may be seen that seasonals were far more pronounced 
prior to 1960 than afterwards.  In the 1920s-40s, April had the strongest positive 
seasonal, while February had the strongest negative seasonal.  The seasonals were much 
smaller in size during the 1970s and 80s, but since 1990 have grown in size again, with 
January now being the most positive and December the most negative.   

 
Figure 12 
Seasonals 
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 Figure 13 shows the time-varying coefficients on selected weighted averages of 
inflation that serve as a basis for the set of first degree splines with knots at 2, 4, 7, 13, 
and 25 months and a zero long-end restriction.  INF1 is simply 1 lag of inflation.  INF3 is 
a weighted average of 1 to 3 lags of inflation, with linearly decaying weights declining to 
0 when projected to month 4.  INF6 is a similar linearly weighted average of 1 to 6 
months of inflation, etc.  Such weighted averages were in fact first proposed by Irving 
Fisher in 1930, who gave them the name “Distributed Lags”.  When combined in this 
manner, they generate first degree splines.  The fact that the coefficient on INF24 is quite 
small in comparison to the others suggests that inflation lagged by more 12 months has 
little if any marginal predictive power.  This hypothesis is examined further below.   

 
Figure 13 

Coefficients on Spline Basis Functions of Inflation 
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 Figure 14 shows the net lag structures implied by the coefficients in Figure 13 for 
selected dates, in roughly 10-year intervals.  These dates are January of the year shown, 
except for 2004, which is August.  The lag structures are remarkably stable over time, at 
least qualitatively.  The first lag is always near 0.4, the second lag dips to 0.1 or smaller, 
and then there is a hump in lags 3-6.  In lags 7-13, the coefficients decline to near 0.  In 
fact, prior to 1985, the coefficients are nearly 0 already by lag 7.   

 
Figure 14 

Net Lag Coefficients, Selected Dates 

 
 

 Figure 15 shows the net lag coefficients again, but now for only a few selected lag 
lengths versus all calendar dates.  Since the lag lengths shown are the spline knots, the 
coefficients for the omitted lag lengths are just linear interpolations of their two adjoining 
maturities.   

 
Figure 15 

Net Lag Coefficients, Selected Lags 
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 Figure 16 shows the coefficient on INF24 from Figure 13, plus and minus 1 
standard error.  Apart from vertical scale, this is the same line as the 13 month net lag 
coefficient in Figure 16, since only INF24 contains the 13th lag of inflation.  Indeed, the 
coefficient is never significantly different from 0, so that omitting INF24 would probably 
not hurt the predictive power of the equation.  As noted above, however, it is not clear to 
me at this point how test such a hypothesis formally in the present framework.    

 
Figure 16 

Coefficient on INF24, ± 1 s.e. 

 
 

 Figure 17 shows the seasonally adjusted intercept in blue, computed as the 
average of the time-varying coefficients on the seasonal dummies, along with the sum of 
the 24 lag coefficients, in red.   
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Figure 17 
S.A. Intercept (blue), Sum of Lag Coefficients (red) 

 
 

Figure 18 shows the long-run inflation forecast, in blue, along with the 1-month-
ahead inflation forecast, partially seasonally adjusted, in red.  The long-run forecast is 
computed from the data in Figure 17 as the seasonally adjusted intercept divided by one 
minus the sum of the lag coefficients.  This is the inflation rate that would eventually 
prevail if the coefficients all remained constant at their current levels and no shocks to 
inflation itself occurred.   

 
Figure 18 

Long-Run Inflation Forecast (blue), 
1-Month-Ahead Inflation Forecast, partially s.a. (red) 
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The 1-month-ahead forecasts in Figure 18 have been only partially seasonally 
adjusted, by subtracting the relevant seasonal from Figure 12 from the raw 1-month-
ahead forecast.  Full seasonal adjustment would require also seasonally adjusting the 
lagged inflation rates from which this forecast is computed, though I have not yet had a 
chance to implement this.  Such complete seasonal adjustment would considerably reduce 
the volatility of the 1-month-ahead forecasts.  Inflation forecasts could easily be 
computed for any horizon intermediate between 1 month and infinity.   

 
 In the simplistic Cagan Adaptive Expectations model of (1) and its LLM 
rationalization (2), short-run and long-run inflation forecasts are one and the same thing.  
It may be seen from Figure 18 that with the present much richer ALS model, there are 
often substantial differences between the two.  In 1932, for example, simulated short-run 
annualized inflation forecasts were running around -8%, while the long-run forecast 
never fell below -1%.  In 1980-81, short-run forecasts of CPI-X-adjusted inflation were 
about 9%, while long-run forecasts were barely 5%.  In August of 2004, the (only 
partially s.a.) 1-month ahead forecast was 1.73%, while the long-run forecast was 3.32%.    

 
 Figure 19 shows the variance-equalized forecast errors, computed as in (33).  
There is even more pronounced evidence of volatility clustering here than in our model of 
unemployment.  Whether this is due to the nature of inflation before 1950, or just due to 
improvements in data collection since then, this volatility clustering should be removed 
with a GARCH-ALS model in order to validly compute standard errors and test 
parameter constancy .  As noted, such a model is still under development. 

 
Figure 19 

Variance-Equalized Forecast Errors 

 
 

 
VII.  Potential Future Applications 
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 According to Perron (1983), real GDP growth apparently underwent a permanent 
but unforeseen decline in the vicinity of 1973.  A univariate time series model of log real 
GDP will therefore also be of interest, using as long a history of quarterly real GDP as 
possible, and annual real GDP as far back as the data are reliable.   
 
 Clarida, Galí and Gertler (2000), Orphanides and Williams (2003), Kim and 
Nelson (2004), and others have found time variation in the “Taylor Equation” monetary 
policy response function and/or in policy makers’ simulated forecasts of the variables that 
go into the policy response function.  ALS provides a rigorous method of estimating such 
a time-varying policy equation.  If the response function is “forward-looking” in the 
sense of responding to forecasts of the variables in question, this is a two-stage 
procedure, in which forecasts are first simulated using a ALS filter, and then a time-
varying response function is estimated using the simulated forecasts, using the ALS 
smoother.   
 
 A long literature, going back to Goldfeld (1976), argues that US money demand 
parameters occasionally undergo permanent shifts.  The current “New-Keynesian” 
conventional wisdom (e.g. Woodford 2003) is that such shifts render money aggregates 
irrelevant for monetary policy.  However, an ALS framework accommodates such shifts, 
and at the same time allows money demand to be forecasted meaningfully (if not 
precisely) into the future.   
 
 Among other approaches, I will use the equation  
  t

D
ttttt mmE ελππ +−+= −−− )()( 11

*
1 ,  

developed in McCulloch (1980), to estimate log real money demand D
tm , where πt is 

inflation from period t-1 to t, and *
1−tE  indicates the public’s expectations as of time t-1.  

ALS filter estimates will be used to proxy these expectations, while the ALS smoother 
will be used to estimate the adjustment coefficient λ along with the parameters of money 
demand.  My previous attempts to implement this equation empirically were frustrated by 
lack of a rigorous way to proxy the public’s expectations that would differ from the 
econometrician’s.  ALS now allows the former to be constructed from past experience, 
while the latter is constructed from past and future experience.   
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Appendix 
 
 As mentioned in footnote 6 above, there is an error in the Kalman Filter as 
presented in Sargent’s (1999) equation (94).  To correct this error, Pt-1 in Sargent’s (94b) 
and in the term after the minus sign in (94c) should be replaced with Pt-1 + R1t in 
Sargent’s notation, i.e. by Pt-1 + Qt in ours and Harvey’s.    
  
 The same error appears in the source Sargent cites, namely Ljung (1992), 
equations (36) – (39).  Nevertheless, Ljung’s own source, Ljung and Söderström (1983, 
LS) is correct.   
 
 LS consider a more general case of the KF than is used here or in Sargent or 
Ljung, one which permits the coefficient vector to follow a stationary matrix AR(1) 
process with a driving process, rather than a just random walk as in (16) of the present 
paper.  Harvey treats a similarly general case.  In this more general case, it is expedient to 
introduce, as Harvey does, a notation like bt|t-1 to indicate the expectation of βt 
conditional on yt-1, and Pt|t-1 for its covariance matrix, in addition to bt, bt-1, Pt, and Pt-1.   
 
 In terms of the Harvey conditional subscripts, but our symbols otherwise, Ljung 
and Söderström’s (1.C.14) – (1.C.16) on p. 420 become, in the special case of interest,  
  ))(( 1|1||1 −−+ −+= tttttttt yt bxKbb      (A.1) 

  ( ) 12
1|1|)( −

−− +′′= εσtttttttt xPxxPK      (A.2) 

  ( ) 12
1|1|1|]1[1||1

−

−−−+−+ +′′−+= εσttttttttttttttt xPxPxxPQPP .   (A.3) 
Since in the random walk case, bt+1|t becomes our bt and Pt|t-1 becomes our Pt-1 + Qt, (A.1) 
– (A.3) are equivalent to (18) – (20) above, which in turn derive from Harvey’s (3.2.3a) – 
(3.2.3c).  Thus, Harvey and LS are in agreement.    
 
 However, LS do not use Harvey’s conditional subscript notation, but instead refer 
to the expectation of their time t coefficient vector “xt,” conditional on information up to 
and including t-1 (i.e. bt|t-1 above), simply as “ )(ˆ tx ,” and to its covariance matrix (Pt|t-1 
above) simply as “P(t),” etc.  The source of the error in Ljung (1992) and thence Sargent 
(1999) is that when Ljung simplified (1.C.14) – (1.C.16) in LS to the random walk case, 
he redefined “ )(ˆ tx ” to be the expectation of the time t coefficient vector conditional on 
information up to and including time t, i.e. our bt, and “P(t)” to be its covariance matrix, 
i.e. our Pt.  In making this notational revision, however, he simply replaced “P(t)” in his 
former notation, at all but one point, with “P(t-1)”, instead of with Pt|t-1 = Pt-1 + Qt, i.e. 
“P(t-1) + R1(t)” in terms of his new notation, as he should have.12   
 
 In order to correct equations (36) – (39) in Ljung (1992), therefore, “P(t-1)” in 
(38) and in the expression after the minus sign in (39) should be replaced with “P(t-1) + 

                                                 
12 Note that whereas Ljung (1992) associates subscript t with the change in the coefficient vector between 
times t-1 and t, this subscript is t-1 in LS.  Although LS do not explicitly date the covariance R1 of this 
change, if they had, the “R1(t)” of Ljung (1992) would therefore have been “R1(t-1)” in the LS notation.   



 31

R1(t).”  Corresponding  replacements should be made in Sargent’s (1999) (94), as noted 
above.   
 
 In correspondence, Ljung has kindly indicated that he in fact intended the “P(t-1)” 
of his 1992 book to be Pt|t-1, despite the apparently contrary definition given in his text.  
However, he points out that even then there is an error, since then the R1(t) in the first 
part of (39) on p. 99 should not be present.   
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