1 Documentation for the procedures in 3d_mat.src

The procedures in this file handles three-dimensional matrices. The following procedures are available:
make_3d : proc
put_3d : proc
get_3d : proc
del_3d : proc
The procedures are described below.

1.1 make 3d

This procedure creates a three-dimensional matrix with the dimensions x, y and z. x denotes the number of rows in the two-dimensional matrix. y denotes the number of columns in the two-dimensional matrix. z denotes the number of two-dimensional matrices that are stacked on top of each other. The first sheet with a two-dimensional matrix is given the value $z=1$.

x	number of rows
y	number of columns
z	number of sheets

Table 1: Size of the three-dimensional matrix.
Syntax: $\{$ mat_3d $=$ make_3d(x,y,z);
Inputs: x, y, z (see Table 1).
Output: A two-dimensional matrix, mat_3d, that is the object used to replicate a three-dimensional matrix.

1.2 put_3d

This procedure takes a two-dimensional matrix of size $x \times y$ and puts it in a specified column of the three-dimensional matrix.

Syntax: $\{$ mat_3d $\}=$ put_3d(put_mat,mat_3d,i);
Inputs: put_mat is the matrix to be put into the i :th sheet of the threedimensional matrix mat_3d.

Output: mat_3d is the three-dimensional matrix that was fed to the procedure but it is returned with the matrix put_mat in the i:th sheet.

1.3 get_3d

This procedure gets the $x \times y$ matrix in the i:th sheet from the three-dimensional matrix mat_3d.

Syntax: \{get_mat\}=get_3d(mat_3d,x,y,i);
Inputs: The three-dimensional matrix that the two dimensional matrix is to be extracted from is denoted mat_3d. x and y are the number of rows and columns of the matrix that is to be extracted. i denotes the sheet in which the extracted matrix is to be found.

Output: get_mat is the matrix that is extracted.

1.4 del 3d

This procedure places zeros in a sheet of the three-dimensional matrix.
Syntax: $\{$ mat_3d $\}=$ del_3d(mat_3d,x,y,i);
Inputs: Places a two-dimensional matrix with x rows and y columns of zeros in the $i:$ th sheet of mat_ $3 d$.

Output: mat_3d is the new matrix with the $i:$ th sheet set to zero.

2 Sample Gauss program

$\mathrm{x}=3$;
$\mathrm{y}=2$;
matrix
$\mathrm{z}=5$;
matrix
$\{\mathrm{c} 3 \mathrm{~d}\}=$ make $_3 \mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{z})$; mat $=1 \sim 2\left|3^{\sim} \overline{4}\right| 5^{\sim} 6$; $\{\mathrm{c} 3 \mathrm{~d}\}=$ put_3d(mat,c3d,1);
of the 3 d matrix mat2= get_3d(c, x, y,1);
$\{\mathrm{c} 3 \mathrm{~d}\}=\mathrm{del}-3 \mathrm{~d}(\mathrm{c} 3 \mathrm{~d}, \mathrm{x}, \mathrm{y}, 1)$;
of the 3d matrix
/* Sets the number of rows in the 2d matrix /* Sets the number of cols in the 2d /* Sets the number of sheets in the 3d
/* Generates a 3d matrix
/* Defines a 2d submatrix
/* Places the 2d matrix in the first sheet
/* Deletes the 2d matrix in the first sheet

