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Abstract

This paper describes a Gauss program for the estimation of discrete choice
dynamic programming models using the Nested Pseudo Likelihood algorithm in
Aguirregabiria and Mira (2002). It discusses several econometric and compu-
tational issues in the implementation of the algorithm, and illustrates the use
of the program with several examples using both actual and simulated data.

Keywords: discrete choice, dynamic programming, estimation, simulation.

1 Introduction

The estimation of discrete choice dynamic programming models has been one of the
most active research areas in micro-econometrics during the last two decades.! A
major contribution in Rust (1987) was to introduce the Nested Fixed Point algorithm
(NFXP) to obtain maximum likelihood estimates of structural parameters in these
models. Hotz and Miller (1993) proposed a simpler estimator than NFXP for this
class of problems. Hotz-Miller estimator (or Conditional Choice Probabilities, CCP,
estimator) is a two-stage procedure that provides consistent and asymptotically nor-
mal estimates of structural parameters without having to fully solve the dynamic

programming problem. Previous conventional wisdom was that the CCP estimator

LFor surveys of this literature see Eckstein and Wolpin (1989), Pakes (1994), Rust (1994a, 1994b)
Wolpin (1996), and Miller (1997).



achieved a significant computational gain at the expense of efficiency, both in finite
samples and asymptotically.

In Aguirregabiria and Mira (2002) we propose an estimation procedure, the Nested
Pseudo Likelihood (NPL) algorithm, which bridges the gap between these two previ-
ous estimation strategies. When the NPL algorithm is initialized with consistent
(non-parametric or semi-parametric) estimates of conditional choice probabilities,
successive iterations return a sequence of estimators of the structural parameters
which we call K—stage Policy Iteration estimators (PIE). This family includes as
extreme cases a particular CCP estimator (for K = 1) and Rust’s NFXP estimator
(in the limit as the algorithm converges). Contrary to previous conventional wisdom,
we show that the asymptotic distribution of all the estimators in the sequence is the
same and equal to that of the maximum likelihood estimator. When the algorithm is
initialized with arbitrary conditional choice probabilities (i.e., not necessarily consis-
tent estimates) it also returns upon convergence the NFXP estimator. In a numerical
example based on Rust’s bus replacement model, we found that when using arbitrary
initial probabilities NPL produces maximum likelihood estimates 5 to 15 times faster
than NFXP. When the algorithm is initialized with nonparametric estimates of choice
probabilities, the computational gains relative to NFXP are much larger. For this
particular application, we find that the gains in terms of finite sample properties of
using the 2-stage PI estimator instead of the 1-stage estimator (Hotz-Miller) are very
significant, but additional gains by using the ML estimator instead of 2-stage PI are
small.

This paper describes in more detail several computational and econometric issues
associated with the NPL algorithm, as well as a Gauss program that implements
this algorithm for a class of multinomial dynamic programming models.? Although
NPL is an algorithm for a general class of dynamic programing models, this paper
concentrates in the particular subclass of models for which the code has been written.
This subclass is a dynamic programming version of McFadden conditional logit model
(see McFadden, 1984, pp. 1411-1413).

The rest of the paper is organized as follows. Section 2 presents the model and

2The code, and future upgrades, can be found at http://people.bu.edu/vaguirre/programs/npl.html.



the different estimation methods, i.e., NFXP, CCP and NPL. Section 3 describes
the GAUSS code and possible modifications and extensions of this code. Finally, I

present two applications with actual data in section 4.

2 Model and estimation methods

2.1 Econometric model

Time is discrete and indexed by t. At each period ¢ an agent observes the vector of
state variables s; and he chooses an action a; € A = {1,2, ..., J} in order to maximize
the expected sum of current and future payoffs discounted by 3 € (0,1):
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where wu(ay, s;) represents payoff or utility at period ¢. From the point of view of
the observing researcher there are two types of state variables, s; = (x;,;). The
vector x; is observable to the econometrician, and it has a discrete and finite support,
z, € X = {xl, ...,xM}.3 The vector of state variables e; is unobservable to the
researcher, it has J components, {e, : a € A}, and each of this components is a
continuous random variable, with support the real line, and with continuous and
twice differentiable distribution function.

The payoff function u(ay, x,¢;) is additively separable in the observable and un-
observable components, and multiplicatively separable in x; and the structural para-

meters in preferences. More specifically,
u(a, ry,er) = 2zq(x) 4 en (2)

where « is a K X 1 vector of structural parameters, and z,(x;) is a 1 x K vector of
functions of x;. The unobservables {e,; : a € A} are independently and identically
distributed over time and over choice alternatives with a Extreme value distribution
with mean zero and dispersion o. Therefore, the specification of current utility is the
one in McFadden’s Conditional Logit model (see McFadden, 1984). The model in

this paper is a dynamic programming version of McFadden’s Conditional Logit.

3The vector of state variables x; may contain lagged values of the decision variable, e.g., a;_;.
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When the agent makes his decision at period ¢ he has uncertainty about future
values of x and . His beliefs about uncertain future states can be represented by a
Markov transition probability p(x;y1,€ti1|xy, €1, ar), which factors as (i.e., conditional

independence assumption)*

P(Tia1, €041 | $t>5t,at) = gg(6t+1) f5($t+1|$t,at) (3)

where g, is the density of €;, and fs is the conditional choice transition probability
of x;, that depends on the vector of parameters 6.

Given these assumptions, the model is a stationary Markov decision problem with
state variables z; and ;. Let 0 = {«, 0,8, 3} be the vector with the structural para-
meters of the model, and let vy(x, e¢) be the value function. By Bellman’s principle

of optimality, vy is the unique fixed point of the following contraction mapping,

vg(T4,€¢) = max {Za<xt) o+ Eqt + ﬁg}l fs(@ii1|2e, @) /Ue<$t+17 €t11) go(dery1)
(4)
And the optimal decision rule aj(z;, &) can represented as the arg maz in a of the
term in brackets in previous equation.
For the description of the econometric model it is convenient to define versions
of vp(zy, &) and aj(xy,e;) which are integrated over the unobservables e;. Define
the integrated value function Vy(x;) = [wvg(xs,€1)gs(de). Taking into account this

definition and the previous Bellman equation, it is clear that:

V(z;) = | max {Za(l“t) ateq+BY ) fo(wlr,a) Ve(l’t+1)} 9o(der),  (5)

Tt41

The right-hand side of this equation is a contraction mapping in the integrated value
function, and therefore Vj is the unique fixed point of this mapping. Define also the
integrated optimal decision rules, or conditional choice probabilities (CCPs), P§(z:) =
[ I{ay(xe,e) = atgs(der) = Pr(a; = alzy;6). These probabilities are the building

blocks of any estimation procedure. Given that the unobservables are extreme value

4See Rust (1994a, 1994b) for discussions about the conditional independence assumption.



distributed, the CCPs have the following form:

exp {za(xt)% + g > fs(za|we, a) Ve(xtﬂ)}
Fy(a) = (6)

Zj:1 exp {Zj(xt)% + g Z fs(xeg1|me, ) VH(%H)}

Tt41

Equations (5) and (6) describe the econometric model. For any vector of structural
parameters 6 the solution of Bellman equation (5) provides the vector of optimal val-
ues Vp. Given these values it is possible to obtain choice probabilities using equation
(6).

The NPL estimation algorithm exploits several properties of the policy iteration
operator associated with the integrated Bellman equation (5). Let P = {P%(z) :
x; € X;a € A} be an arbitrary vector of conditional choice probabilities. The policy
iteration operator is a fixed point mapping in the space of P, i.e., it maps vectors of
CCPs into vectors of CCPs.”> Let Wy(P) = {W(z; P) : , € X;a € A} be this policy
iteration operator. When unobservables are extreme value distributed this operator

has the following closed form:
~ « ~
exp{ Zo(z; P, 0) - + é,(zy; P, 0) }

- a
ijl eXP{ zj(wy; P, 6) p + €;(z4; P, 6) }

\Ijg(l't,P) =

where . Zg(xy; P, 6) = zo(x) + 5 Z fs(@ei|ze, a) Wo(xpiq; P, 6);

Ti41

Ca(we; P,6) = B ) fo(wepalzs, a) We(wiya; P,6)

Tt41

W.(P,6) = {W.(z; P,6) : x € X} is a M x K matrix, and W,(P,6) = {W.(z; P,0) :
x € X}isa M x 1 vector with the following definitions:
J R -
W,(P,8) = [1 —8 Y pex Fg] [Zazl P x Za] :

J R (8)
W.(P,6) = {] - B Za:l P x Fg‘} {Zazl P x (Euler — ln(P“))] ;

°In general, a policy iteration operator is a fixed point mapping in the space of decision rules.
In our case, conditional choice probabilities can be interpreted as the decision rules associated with
the integrated Bellman equation (see Aguirregabiria and Mira, 2002).
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where * is the element-by-element (or Hadamard) product; {F¢ : a € A} are the
M x M matrices of transition probabilities with fs(2™|2™,a) at position (m,m’);
and {Z, : a € A} are the M x K matrices with z,(z™) at the m — th row.

This mapping has a clear interpretation. First, W,(x; P,§)is the expected and
discounted value of the stream of future z’s provided that the agent behaves according
to choice probabilities in P. W, (x; P, ¢) has a similar interpretation: it is the expected
and discounted value of the stream of future £’s given that the agent behaves according
to P. Therefore, W, (P, §)+W,(P, ) is the vector of integrated values associated with
following a decision rule with vector of probabilities P, i.e., it is a policy valuation

operator. For the same reason,

Zat O+ Car = za(x1) + Y fo(@ipa|2, a) [We(2y415 P, 6) + We(@iga; P, 6)]

Tr41

is the value of choosing alternative a today given that in the future decisions will
be made according to P. Given the conditional choice values {Z,a + €, : a €
A}, the optimal current decision (i.e., policy improvement operator) is to choose the
alternative with the maximum value Z, o + €,:. The choice probaHilities associated
with this decision rule are exp{Z,;« + €4} {Zj: . exp{Zyja + €;;}| . Therefore, the
mapping Wy is the composite of a policy valuation operator and a policy improvement

operator. The following are some important properties of the mapping Wy.

PROPOSITIONS 1-2 (Aguirregabiria and Mira, 2002): Given additive separability
of u(a,z,e) in x and €, and the conditional independence assumption, we have that
for any vector 0: (a) Yy is a contraction mapping; (b) Py is the unique fixed point of
this mapping; (c) Yy is the policy iteration operator (or Newton operator) associated
with Bellman equation (5); and (d) the Jacobian matriz OVy/OP is zero at the fized
point By.

The main computational cost in the evaluation of ¥y comes from the computation
of W,(P,6) and W,(P,§), and more specifically from the inversion of matrix I — /3
ZZ: . P x F¢. The computational gains associated with NPL algorithm and Pol-
icy Iteration estimators result from avoiding repeated computation of W, (P,6) and

W.(P,6) during the evaluation of the (pseudo) likelihood function.



2.2 Estimation

Consider that the data set consists of a panel of individuals with information on
their actions and observable state variables at different periods of time: {z;,a; :

= 1,2,..,N;t = 1,2,....,T}. We are interested in the estimation of the vector
of structural parameters . Consistent estimates of 6 can be obtained maximizing
the partial likelihood Y ST !In fs(@i1q1|Ti, ). This estimation of ¢ does not
require one to solve the Markov decision model. I concentrate here in the estimation
of the rest of the structural parameters taking as given a consistent estimate of 6.
Furthermore, I adopt the normalization ¢ = 1, and take as known the discount factor
(. Therefore, the vector of parameters to estimate is . For notational simplicity I
omit 6 as an argument in P and W.

The (partial) log-likelihood function for this model and data is,

N T J

o) =3 Hay = j} InP(zx) (9)

i=1t=1 j=

3
[y

where, for any vector o, P, = {Pi(x) : j € A;x € X} is the unique fixed point
of the mapping ¥,. For an arbitrary vector of probabilities P, define the pseudo
log-likelihood function,

=22 > Han=j} mW(x; P) (10)

i=11=1 j—1
2.2.1 Nested pseudo-likelihood (NPL) algorithm

Start with an initial guess for the conditional choice probabilities, P° € [0,1]"7. At

iteration K > 1, apply the following steps:

Step 1: Obtain the matrix W,(PX 1) and the vector W, (PX~!). For each
sample value of x;; obtain 252»{1 = za(zit) + 0 Z fs(@'|zie, )W, (z'; PE-1L),
and emt ﬁZf(s i, a)We(a'; PET).

Step 2: Given { Zai'}and {€f;;"} obtain a pseudo maximum likelihood es-
timate of «, by maximizing the pseudo log-likelihood function lN(a; PE-D,

That is, estimate a conditional logit model with explanatory variables
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{zF7"} and {€};;'}, where the parameter associated with {€} '} is re-

stricted to be one. Call o to this estimator.
Step 3: Update P using the estimated probabilities in Step 2: PF =
{P*E(z):a € A;z € X}, where

exp{ Zo(z; PE7Y) o + éq(z; PETT) }

J

PK(z) =
Zj:l exp{ Z;(zy; PE-1) of + é;(xy; PK1) }

Iterate in K until convergence in P (or «) is reached.

Notice that at Step 2 the values {Z};;'} and {é,,;'} are given, and therefore the
evaluation of the pseudo log-likelihood function (and of its gradient and Hessian)
does not require repeated computation of W, and W,. Furthermore, the pseudo log-
likelihood function is globally concave in «, which in general it is not the case for the

log-likelihood function.
PROPOSITION 3: (Aguirregabiria and Mira, 2002) If NPL converges it does so to a

root of the likelithood equations.

2.2.2 Policy Iteration (PI) estimators

Given our sample and model, it is possible to identify nonparametrically the true
(population) conditional choice probabilities P, = {Pr(a;; = alry = x) : a € A;x €
X}. Therefore, instead of using an arbitrary vector P°, we can initialize the NPL
algorithm using a consistent estimator of P,. Performing one, two and in general K
iterations of the NPL algorithm yields a sequence {dl, &, ek } of statistics which

can be used as estimators of a. These are the Policy Iteration (PI) estimators.

PROPOSITION 4 (Aguirregabiria and Mira, 2002): Under the regularity conditions
for the consistency and asymptotic normality of the mazximum likelithood estimator,
every PI estimator is root-n-consistent, asymptotically normal, and asymptotically

equivalent to the (partial) mazimum likelihood estimator.

The asymptotic distribution of all the PI estimators is the same and equal to
the one of the maximum likelihood estimator. Therefore, as long as initial estimates

of CCPs are consistent, the precision of these initial estimates does not affect the
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asymptotic precision of the PI estimators. However, it seems reasonable to believe
that it will affect their finite sample properties.

In principle, we can use a nonparametric kernel estimator to obtain initial consis-
tent estimates of CCPs. However, since the model is fully parametric, we know the
distribution of the unobservables. That is, we know that the true choice probabilities

have the following form:

Pizy) = 5Xp {9a(it) }

> exp g3 ()

where g*(x;) = Zi(zy)a* + €5 (zy) are vectors of unknown functions of z;. This is

semiparametric model for a; conditional on z;, and it is possible to obtain consis-
tent estimates of CCPs using a polynomial series semiparametric estimator. Define
Pi(xy) = exp {h(zit)'v,)} [Zj_l exp {h(xit)’fya}] _1, where h(x;) is a vector of poly-
nomial terms in z; (i.e., linear terms, quadratic, etc), and 7, is a vector of unknown
parameters. This is a standard multinomial logit model with vector of explanatory
variables h(x;). Estimates of the parameters {7,} can be obtained by maximum
likelihood. Solving these estimates in Pj(x;) provides a consistent semiparametric

estimate of P%(x;).

3 Gauss program and procedures

The software package for the implementation of NPL and PI estimation consists of a
main program KPIE.PRG and several procedures which are called by this program.
I describe here the main program following the same order as in the code flow. A

detailed description of the procedures can be found in the Appendix.

Step 1: User’s description of decision variables:

1.1. Number of decision variables: In some applications the discrete decision
variable a can be a discretized continuous variable, or the result of combining sev-
eral discrete and/or discretized continuous variables. The program allows for this
possibility.

1.2. Type of discretization: The user selects whether discretization of the decision

variable(s) is needed or not. If discretization is needed, the user can choose between
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two types of discretizations: (1) a uniform grid in the space of the variable; or (2) a
uniform grid in the space of the empirical probability distribution of the variable.
1.3. Number of cells in discretization
1.4. Minimum and maximum values in discretization: The user does not choose
a minimum and maximum value in the space of the variable, but a minimum and
maximum percentile (which can be 0 and 100, respectively). The empirical distribu-
tion of the variable will be used to obtain the minimum and maximum values in the

space of the variable.

Step 2: User’s description of state variables:
2.1. Number of state variables
2.2. Type of discretization (See point 1.2. above)
2.3. Number of cells in discretization

2.4. Minimum and mazimum values in discretization (See point 1.4. above)

Step 3: Data:

3.1. Name and address of data and output files

3.2. Number of observations and individuals: If the data has a panel structure,
the user should provide both the number of individuals and the total number of
observations. The panel can be either balanced or unbalanced, but observations

should be sorted first by individual and then over time.
Step 4: Reading data file
Step 5: Call to procedure for discretizations: DISCKPIE.SRC:

The program calls this procedure twice: one for the discretization of observable
state variables, and the second to discretize decision variables. The procedure returns
a matrix “zval” and a vector “indobsz”. The matrix “zval” contains the values of
the variables at each cell in the discretized space. The vector “indobsx” contains,
for every observation in the sample, the label or indicator of the cell in which the
observation lies. These matrix and vector (for state and decision variables) have all
the sample information that will be used to estimate the model. If decision and/or

state variables do not need to be discretized,
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Step 6: Specification of utility function

6.1. Matrix Z = [Zy,Zs, ..., Z;]: The user defines the matrices Z, = {z,(x) :
z € X} in his model. For doing so, he uses the matrix “zval” obtained from the
discretization of state variables in Step 5.

6.2. Names of parameters: Define a vector with names of parameters in a.

6.3. Value of discount factor 3

Step 7: Specification of transition probability function fs
The program allows for the following specification of the transition of the observ-

able state variables. Let zj; be the k — th state variable in vector x:

Ther1 = Opo(ar) + Op1(ar) Tht + Wi et

where {6x0(a) : a € A} and {6x1(a) : a € A} are parameters, and {wy 11} is a shock
that is 7¢d distributed with density f_x. This structure encompasses many different
specification used in applications.

Example 1: Lagged decision variable, 11 = at: 0go(ar) = a3 6x1(a;) = 1 for every
ag; wr41 = 0.

Example 2: Deterministic capital accumulation, xy 41 = 0xZrs: dko(ar) = 0, for every
a; Op1(ar) = Oy for every a; and wy 49 = 0.

Example 3: Stochastic capital accumulation, xy 41 = O Trt + w1 Oko(ar) = 0, for
every a;; and 8y (ay) = 6 for every ay.

Example 4: Replacement, xy; 1 = I(a; = 0)zgs + w1 Oko(ar) = 0, for every ay;
and 0y (a) = I(a; = 0).

The user can fix some or all the parameters §; and/or the density f,, or he can let
the program to estimate these primitives from the data. If the transition probabilities
in the user’s model are not encompassed by this specification, he can provide his own
transition matrices.

7.1. Parameters 6;: If some parameters 05 are fixed by the user, the should
provide their values here.

7.2.  Deterministic or stochastic transition: For every state variable, the user

decides whether the transition is stochastic or deterministic (i.e., wg = 0).
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7.4. Call to procedure for estimation of transition probabilities TRANPROB.SRC:
This procedure returns the matrices of estimated conditional choice transition prob-
abilities, {Fg ca € A}

8. Initial choice probabilities:

Initial probabilities are estimated using the reduced form multinomial logit esti-
mator described in section 2.2.2. The user can also provided its own

8.1. Vector of explanatory variables: The user defines the vector of explanatory

variables for the reduced form multinomial logit, i.e., the vector h(z;).

8.2. Call to procedure for estimation of initial probabilities MULTILOG.SRC.

9. Structural estimation:

9.1. Number of policy iterations for PI estimator: The parameter “kstage” deter-
mines the number of policy iterations to use. If the user wants the procedure to iterate
until convergence (i.e., maximum likelihood estimator) he should fix kstage > 5.

9.2. Call to procedure for PI estimator: KPIE.SRC: This procedure returns the
sequence of the first “kstage” PI estimators, their respective variance-covariance ma-
trices, and their vectors of predicted conditional choice probabilities for every value
x. It calls the procedure CLOGIT.SRC to obtain maximum likelihood estimates of
a McFadden’s conditional logit model. The matrix W, and vector W, are obtained

solving a system of linear equations that uses a Crout (LU) decomposition of matrix
J
I-p ZGZIP“ x F§.

4 Applications

4.1 Bus engine replacement model (Rust, 1987)

The first example comes from the bus engine replacement model in Rust (1987). The
data consists of monthly observations on the odometer readings and maintenance
records of 162 buses in the fleet of Madison Metropolitan Bus Company over the
period December, 1974 to May, 1985. From this information, Rust constructs two
variables: (1) a; is the indicator of engine replacement (i.e., actual physical replace-

ment or a major overhaul of the engine) for bus i at month ¢; and (2) x; is the
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cumulative mileage of the bus since last engine replacement. See Rust (1987) for a
description of the data.

The model assumes that when the maintenance manager decides whether to re-
place or not a bus engine, his objective is to minimize expected and discounted costs
of maintenance and replacement.. Costs are assumed to be separable over buses and
additively separable over time. Costs associated with bus ¢ at period ¢ are,

me(x; €oit Uf ay=1
Costsy = { rc—?—&i),z’:_ . ij aiz =2
where a;; = 1 means no replacement, and a; = 2 means replacement; mc(z;) is
the component of maintenance costs which is associated with cumulative mileage; rc
represents average replacement cost; and €0,it and €1,;t are components of maintenance
and replacement costs, respectively, which are unobservable to the researcher. The
transition rule for cumulative mileage has the following form:
i = { 00 + 61 it + Wit Zf ay =0
’ Wi, t+1 of ay =1
61 < 1 implies that monthly mileage tends to decrease as cumulative mileage in-
creases. I present estimates of two models, one linear maintenance costs and other
with quadratic costs. For a quadratic specification of maintenance costs, me(x;) =
mciTy + mch%t, the vector of parameters « is (rc, m01,m02)/ and the vectors of
functions {z,(z:)} are z1(zi) = (0, 24, %) and 2 (x) = (1,0,0).

Estimates of g and 6, are statistically different to 0 and 1, respectively: 50 = 3564
miles (s.e. = 36.77), and &; = 0.9980 (s.e. = 0.0002). I use these estimates to
construct transition probabilities. I present here estimates of structural parameters
using a discretization of the state variable with 400 cells and a uniform grid in the
space of the variables. Results are very similar when using a discretization based
on a uniform grid in the probability distribution of the state variable. I obtain
PI estimates using two different initial estimates of conditional choice probabilities,
P% (1) a constant probability, P°(a = 1|z) = (1/n) ;> ay; and (2) P° from the
estimation of a logit model where the explanatory variables are the terms of a cubic

polynomial in x;;.
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Table 1 shows that for this data and model the 1-stage PI estimator performs

very well even when the initial P° is just a constant. This contrasts with the results

from the Monte Carlo experiment in Aguirregabiria and Mira (2002) using the same

model but with simulated data. In that experiment we show that the 2-stage PI

estimator performs very well in finite samples, but that the 1-stage PI estimator

performs badly. However, for this particular data set, the 1-stage PI estimator is

statistically and almost numerically equivalent to MLE. In all the case 2-stages is

enough to obtain the MLE, and for quadratic adjustment costs and a cubic P° the

1-stage estimator is numerically equivalent to MLE.

Table 1
Bus engine replacement model

Model 1 : mc(x) = mc,x; §=0.99

P constant PP cubic
1-stage 2-stage MLE (2 stages) 1-stage 2-stage MLE (2 stages)
rc 6.354 6.356 6.356 6.356 6.356 6.356
(0.267) (0.267) (0.267) (0.266) (0.267) (0.267)
mcey 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112
(0.0012)  (0.0012) (0.0012) (0.0012)  (0.0012) (0.0012)
Model 2: mc(x) = me,x + mcox?; 5 = 0.99
P constant PP cubic
1-stage 2-stage MLE (2 stages) 1-stages 2-stages MLE (1 stage)
rc 8.987 8.979 8.979 8.979 8.979 8.979
(0.906) (0.903) (0.903) (0.903) (0.903) (0.903)
mey 0.0451 0.0450 0.0450 0.0450 0.0450 0.0450
(0.0097)  (0.0097) (0.0097) (0.0097)  (0.0097) (0.0097)
mey | -8.77¥107°  -8.76%107° -8.76%107° -8.76%10™°  -8.76*107° -8.76%107°
(2.39%10°7)  (2.39%10°%)  (2.39%10°%) | (2.39%10°%) (2.39%10°%)  (2.39%10 )

Data: 8260 bus-month observations from 104 buses (models 1,2,3 and 4).

Number of cells = 400; Uniform discretization in the space of the state variable.
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4.2 Labor demand model (Aguirregabiria and Alonso, 1999)
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Appendix: Description of procedures

DISCKPIE.SRC: It discretizes a vector of variables according to a criterion selected

by the user. Format:

{zval,indz0}

Inputs:  xobs =
dtype =

minpct =
maxpct =
numx =

Outputs : zval =

indx0 =

= disckpie(xobs, dtype, minpct, mazxpct, numz)

(nobs x kvar) matrix with observations of variables.
(kvar x 1) with discretization criteria.

“dtype[j] = 17 — Variable “5” is discrete and not more
discretization is needed;

“dtype[j] = 2”7 — Variable ” 77 will be discretized using

a uni form grid in the space of the variable;

“dtypealj] = 3" — Variable “j” will be discretized using

a uniform grid in the space of its probability distribution.
(kvar x 1) vector with percentiles for the minimum values

i the discretized spaces.

(kvar x 1) vector with percentiles for the maximum values

i the discretized spaces.

(kvar x 1) vector with number of cells in the discretized spaces.

(totnumaz X kvar) matriz with the discretized support of the
variables. Column “j” corresponds to variable “j”.

Rows are sorted by variables.

(nobs x 1) vector with indexes of the discretized observations.

E.g., if discretized value of xobs[i] is zval[j] then indx0[i] = j.

PCTILES.SRC: It obtains percentiles of a random variable given a sample. Format:

Inputs: y
p

pey = petiles(y, p)

= (nobs x 1) vector of observations.
= (k x 1) vector of probabilities (in %).

Outputs : pcy = (k x 1) vector of percentiles.

DISCTHRE.SRC: It discretizes a variable using a vector of thresholds provided by

the user. Format:

discy = discthre(y, thre)
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Inputs : y
p
Outputs :  discy

(nobs x 1) vector of observations.
(k x 1) vector of thresholds.

(nobs x 1) vector with codes of the discretized
observations. Example : I f y[i] € (thre[5], thre[6]],
then discyli] = 6.

TRANPROB.SRC: It estimates Markov transition probabilities f(x;; 1|z, a;) where

x; is a vector of K variables, a, is discrete, and the form of the transition rule for vari-

able @y is: Tp 11 = Oko(ar) + k1 (ar) Tht+wp i1, Where {Ogo(a),0p1(a) :a =1,2,...J}

are parameters, and wy 11 is an 7¢d random shock. Format:

fmat = tranprob(indz,inda, id, zval, fixdel, vdel0, vdell, vomega)

Inputs :

Outputs :

xobs
inda
id

zval
fixdel
vdel)

vdell

vomega

fmat

(nobs x kvar) vector with observations of x.

(nobs x 1) vector with observations of a.

(nobs x 1) vector with the IDs of individuals.

1f the data is not a panel this parameter should be zero.
(numx X kvar) vector with discretized support of .
(kvar x J) matriz of zeros and ones.

fizdellk, j] = 0 — 6x(j) will be estimated from the data;
fizdel[k, j] =1 — 6x(j) is provided by the user.

(kvar x J) matrixz where vdelOlk, j] is the value of dxo(j)
provided by the user. If dxo(j) will be estimated,
vdelO[k, j] can be arbitrary.

(kvar x J) matriz where vdelOlk, j] is the value of 6xo(j)
provided by the user. I f dyo(7) will be estimated,
vdelO[k, j] can be arbitrary.

(kvar x J) matriz of zeros and ones.

vomegalk, j] = 0 — deterministic transition for xj
vomegalk, j] = 0 — stochastic transition for xi

(numx X numax * nchoice) matriz with conditional choice
transition probabilities : fmatl™ fmat2™...” fmat.J.

KERNEL1.SRC: Kernel estimation of a univariate density function using a Gaussian

kernel. The bandwidth is equal to Silverman’s rule of thumb divided by (7n)'/?. This
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choice intentionally generates under-smoothing. Format:

pest = kernell(xobs, xpred)

Inputs: xobs = (nx 1) wvector of observations.
xzpred = (k x 1) vector of of values where the pdf.
will be estimated.

Outputs : pest = (k x 1) wvector of estimates.

MULTILOG.SRC: Estimation of a multinomial logit model by maximum likeli-
hood. The optimization algorithm is a Newton’s method withwith analytic expres-

sions for the gradient and Hessian.. Format:

{best,varest} = multilog(yobs, xobs)

Inputs:  yobs = (nobs x 1) with observations of dependent variable.
L.e., indicator of discrete choice € {1,2, ..., J}.
zobs = (nobs x k) matriz with observations of explanatory variables.
Outputs : best = (kx*(J —1) x 1) vector with parameter estimates.
Normalization : 3, = 0.
varest = (kx*(J—1)x (kx (J— 1)) matriz with estimated covariance matrizx.

KPIE.SRC: It estimates structural parameters of a discrete choice dynamic pro-

gramming model using the a K-stage Policy iteration estimator. Format:

{tetaest,varest, pest} = kpie(inda, indx, zmat, pini, bdisc, fmat, kstage, names)
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Inputs: inda = (nobs x 1) vector with observations of discrete decision variable.

inde = (nobs X 1) vector with observations of the index of state vector x.

zmat = (zmatl”zmat2”..." zmatJ) matriz with values of the functions z.(x).
(

ping = (numz x J) Uector with tnitial reduced form estimate of
conditional choice probabilities Pr(a = j|x).

bdisc = Discount factor (between 0 and 1).

fmat = (fmatl” fmat2”..." fmatJ) matriz with conditional choice
transition probabilities.

kstage = Number of “outer” policy iterations.I f kstage > 5 the procedure
iterates until convergence and returns the ML estimator.

names = (K x 1) vector with names of parameters.

Outputs : tetaest = (K X kstage) matrix with estimates of structural parameters

for each of the k stages..

varest = (K x K * kstage) matrix with asymptotic covariance matrices
for each of the k stages.

pest = (numz X kstage) matriz with estimated choice probabilities Pr(a = j|x)

for each of the k stages.

CLOGIT.SRC: Maximum Likelihood estimation of McFadden’s Conditional Logit.
Some parameters can be restricted. Optimization algorithm: Newton’s method with

analytical gradient and Hessian.. Format:

{best,varest} = clogit(ydum, xobs, restx, namesb)

Inputs:  ydum = (nobs x 1) vector with observations of dependet variable.
Categorical variable with values {1,2, ..., J}.
xobs = (nobs x k x J) matriz with observations of explanatory variables

associated with unrestricted parameters.
First k columns correspond to alternative 1, and so on.

restx = (nobs x J) matriz with observations of explanatory variables
with parameters rerestricted to be 1 (without loss of generality).
First column corresponds to alternative 1,and so on.

namesb = (k x 1) vector with names of parameters.
Outputs : best = (k x 1) vector with parameter estimates.
varest = (k x k) matriz with estimated covariance matriz.
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